ZHEJIANG UNIVERSITY
 Center for Correlated Matter
 Stefan Kirchner
 kirchner@correlated-matter.com

Solid State Theory I

1. Exercise Sheet

May 16, 2017

1 OnE-PARTICLE OPERATORS IN SECOND QUANTIZATION

A one-particle operator in a many-body system is an operator that acts on the state of a single particle at a time. It is defined as $\hat{B}=\sum_{i=1}^{N} \hat{B}_{i}$ where \hat{B}_{i} is given by

$$
\begin{equation*}
\hat{B}_{i}=\not_{1} \otimes \ldots \otimes \nVdash_{i-1} \otimes \sum_{\nu, \mu}\langle\nu| \hat{b}|\mu\rangle|\nu\rangle\left\langle\left.\mu\right|_{i} \otimes \nVdash_{i+1} \otimes \ldots \otimes \nVdash_{N},\right. \tag{1.1}
\end{equation*}
$$

where $\langle\nu| \hat{b}|\mu\rangle$ are the matrix elements in one-particle quantum mechanics. In other words, \hat{B}_{i} acts trivially in all Hilbert spaces, except in that of particle i.
(a) Applying \hat{B} to the state $\left.\mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}$ introduced above, show that one obtains

$$
\begin{align*}
\left.\hat{B} \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\} & =\frac{1}{\sqrt{N!}} \sum_{\mu, \nu}\langle\nu| \hat{b}|\mu\rangle \\
& \times \sum_{i, P} \xi^{\sigma(P)} \delta_{\mu, \alpha_{P(i)}}\left|\alpha_{P(1)}\right\rangle_{1} \otimes \ldots \otimes|\nu\rangle_{i} \otimes \ldots \otimes\left|\alpha_{P(N)}\right\rangle_{N} . \tag{1.2}
\end{align*}
$$

Note that we have explicitly labeled the one-particle states with a subscript to identify the subspace they belong to within the tensor product (??), e.g. $|\nu\rangle_{i}$ belongs to the subspace of particle i.
(2 points)
(b) Show that one can write the last summation in (1.2) as

$$
\begin{gather*}
\sum_{i, P} \xi^{\sigma(P)} \delta_{\mu, \alpha_{P(i)}}\left|\alpha_{P(1)}\right\rangle_{1} \otimes \ldots \otimes|\nu\rangle_{i} \otimes \ldots \otimes\left|\alpha_{P(N)}\right\rangle_{N}= \tag{1.3}\\
\sum_{j, P} \xi^{\sigma(P)} \delta_{\mu, \alpha_{j}}\left|\alpha_{P(1)}\right\rangle_{1} \otimes \ldots \otimes|\nu\rangle_{P^{-1}(j)} \otimes \ldots \otimes\left|\alpha_{P(N)}\right\rangle_{N} \tag{1.4}
\end{gather*}
$$

(2 points)

Hint: Note that $\sum_{j} \delta_{j, P(i)}=1$ for fixed i, as $P(i)=j$ for some $j, \varepsilon\{1, \ldots, N\}$ since any P is a bijective mapping of $\{1, \ldots, N\}$ in itself.
(c) Consider again

$$
\begin{equation*}
\left.\mid \alpha_{1}, \ldots, \alpha_{j}, \ldots, \alpha_{N}\right\}=\frac{1}{\sqrt{N!}} \sum_{P} \xi^{\sigma(P)}\left|\alpha_{P(1)}\right\rangle_{1} \otimes \ldots \otimes\left|\nu_{P(j)}\right\rangle_{j} \otimes \ldots \otimes\left|\alpha_{P(N)}\right\rangle_{N} . \tag{1.5}
\end{equation*}
$$

In which position in each of these terms is α_{j} located? Note that I am not asking where $\alpha_{P(j)}$ is located, which is obviously at position j. From this observation and using (1.3), prove the identity

$$
\begin{array}{r}
\frac{1}{\sqrt{N!}} \sum_{i, P} \xi^{\sigma(P)} \delta_{\mu, \alpha_{P(i)}}\left|\alpha_{P(1)}\right\rangle_{1} \otimes \ldots \otimes|\nu\rangle_{i} \otimes \ldots \otimes\left|\alpha_{P(N)}\right\rangle_{N}= \\
\left.\sum_{j} \delta_{\mu, \alpha_{j}} \mid \alpha_{1}, \ldots, \alpha_{j-1}, \nu, \alpha_{j+1} \ldots, \alpha_{N}\right\} \tag{1.7}
\end{array}
$$

(2 points)

(d) Show that

$$
\begin{equation*}
\left.\left.c_{\nu}^{\dagger} c_{\mu} \mid \alpha_{1}, \ldots, \alpha_{N}\right\}=\sum_{j} \delta_{\mu, \alpha_{j}} \mid \alpha_{1}, \ldots, \alpha_{j-1}, \nu, \alpha_{j+1} \ldots, \alpha_{N}\right\} \tag{1.8}
\end{equation*}
$$

(2 points)

Hint: Use (??) and the symmetry properties of the wave-function under interchange of particles.
(e) Thus, show that

$$
\begin{equation*}
\left.\left.\hat{B} \mid \alpha_{1}, \ldots, \alpha_{N}\right\}=\sum_{\mu, \nu}\langle\nu| \hat{b}|\mu\rangle c_{\nu}^{\dagger} c_{\mu} \mid \alpha_{1}, \ldots, \alpha_{N}\right\} \tag{1.9}
\end{equation*}
$$

(1 point)

Since the state $\left.\mid \alpha_{1}, \ldots, \alpha_{N}\right\}$ is arbitrary, we conclude that a one-particle operator is given, in second quantisation, by

$$
\begin{equation*}
\hat{B}=\sum_{\mu, \nu}\langle\nu| \hat{b}|\mu\rangle c_{\nu}^{\dagger} c_{\mu} \tag{1.10}
\end{equation*}
$$

2 The density operator in second quantization

For a system of N identical particles (fermions) enclosed in a volume V with periodic boundary conditions, the density operator at position r is defined (in its first quantised form), as

$$
\begin{equation*}
\hat{\rho}(\boldsymbol{r})=\sum_{i=1}^{N} \delta\left(\boldsymbol{r}-\hat{\boldsymbol{r}}_{i}\right) \tag{2.1}
\end{equation*}
$$

where $\hat{\boldsymbol{r}}_{i}$ is the position operator of particle i. Note that \boldsymbol{r} is not an operator.
(a) Show that the Fourier transform $\hat{\rho}_{q}=\int_{V} d^{3} r e^{-i q \cdot r} \hat{\rho}(\boldsymbol{r})$ is given by

$$
\begin{equation*}
\hat{\rho}_{q}=\sum_{i=1}^{N} e^{-i q \cdot \hat{r}_{i}} \tag{2.2}
\end{equation*}
$$

(1 point)
(b) The second quantisation representation of $\hat{\rho}(\boldsymbol{r})$, as follows from (1.10), is given by

$$
\begin{equation*}
\hat{\rho}(\boldsymbol{r})=\sum_{\sigma^{\prime}, \sigma} \int_{V} d^{3} x^{\prime} \int_{V} d^{3} x\left\langle\boldsymbol{x}^{\prime} \sigma^{\prime}\right| \delta(\boldsymbol{r}-\hat{\boldsymbol{r}})|\boldsymbol{x} \sigma\rangle \hat{\psi}_{\sigma^{\prime}}^{\dagger}\left(\boldsymbol{x}^{\prime}\right) \hat{\psi}_{\sigma}(\boldsymbol{x}) \tag{2.3}
\end{equation*}
$$

where $\hat{\psi}_{\sigma}(\boldsymbol{x})$ and $\hat{\psi}_{\sigma}^{\dagger}(\boldsymbol{x})$ are the annihilation and creation operators for a fermion, with spin projection along z equal to σ, at point \boldsymbol{x}. Show from (2.3) that $\hat{\rho}(\boldsymbol{r})$ is given by

$$
\begin{equation*}
\hat{\rho}(\boldsymbol{r})=\sum_{\sigma} \hat{\psi}_{\sigma}^{\dagger}(\boldsymbol{r}) \hat{\psi}_{\sigma}(\boldsymbol{r}) \tag{2.4}
\end{equation*}
$$

(2 points)

(c) Show that in second quantization the FT of $\hat{\rho}(\boldsymbol{r})$ is given by

$$
\begin{equation*}
\hat{\rho}_{q}=\sum_{i=1}^{N} \hat{c}_{k-q, \sigma}^{\dagger} \hat{c}_{k, \sigma} \tag{2.5}
\end{equation*}
$$

(2 points)

Hint: Substitute the relations $\hat{\psi}_{\sigma}(\boldsymbol{r})=\frac{1}{\sqrt{V}} \sum_{k} e^{i k \cdot r} \hat{c}_{\boldsymbol{k}, \sigma}, \hat{\psi}_{\sigma}^{\dagger}(\boldsymbol{r})=\frac{1}{\sqrt{V}} \sum_{k} e^{-i k \cdot r} \hat{c}_{\boldsymbol{k}, \sigma}^{\dagger}$, see (??), in the definition of the Fourier transform given above. Note that $\int_{V} d^{3} r e^{-i\left(k-k^{\prime}\right) \cdot r}=$ $V \delta_{k, k^{\prime}}$.
(d) Show that $\hat{\rho}_{q}^{\dagger}=\hat{\rho}_{-q}$.
(1 point)
(e) Show that $\left[\hat{\rho}_{q}, \hat{\rho}_{q^{\prime}}\right]=0$.
(2 points)
Hint: Use the identities $[\hat{A}, \hat{B}, \hat{C}]_{-}=[\hat{A}, \hat{B}]_{-\xi} \hat{C}+\xi \hat{B}[\hat{A}, \hat{C}]_{-\xi}$ where $\xi= \pm 1$.
(f) Use the first quantisation representation of $\hat{\rho}_{q}$, as given in equation (2.2), to show the previous identity.
(2 points)
Hint: What is $\left[\hat{\boldsymbol{r}}_{i}, \hat{\boldsymbol{r}}_{j}\right]$ for arbitrary i, j ?
(g) What is $\hat{\rho}_{q=0}$?
(1 point)

