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1. Exercise Sheet

Mini-Review

Before we ask you to perform any calculations, let us first briefly review some notions
of second quantisation. The Hilbert space of a system composed of N (for the moment
distinguishable) sub-systems is given by the tensor product of individual Hilbert spaces

HN = HS1 ⊗HS2 ⊗ . . .⊗HSN . (0.1)

A complete basis for this space is given by the tensor product

{|αi1〉 ⊗ |αi2〉 ⊗ . . .⊗ |αiN 〉}, (0.2)

where {|αin〉} is a complete set of orthonormal vectors that span the Hilbert space of the
system n.
The closure relation for H is given by∑

i1,i2,...,iN

|αi1〉 ⊗ |αi2〉 ⊗ . . .⊗ |αiN 〉〈αi1 | ⊗ 〈αi2 | ⊗ . . .⊗ 〈αiN | =(∑
i1

|αi1〉〈αi1 |
)
. . .
(∑

iN

|αiN 〉〈αiN |
)

& =

11 ⊗ . . .⊗ 1N . (0.3)

As short-hand for the tensor product above, we will write

|αi1 , αi2 , . . . , αiN 〉 = |αi1〉 ⊗ |αi2〉 ⊗ . . .⊗ |αiN 〉. (0.4)
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In the case of indistinguishable particles, it can be shown in relativistic quantum field
theory that, in three dimensions, the joint wave-function of such a system can have one
of two possible symmetries under the interchange of two particles:

• it is symmetric in the case of particles of integer spin (bosons), or

• it is anti-symmetric in the case of particles of half-integer spin (fermions).

This so-called spin-statistics theorem has to be accepted at our level as a fact of life
and moreover, it does not hold in two dimensions (the particles with strange interchange
properties that are found in certain two-dimensional electron gases are called anyons).
If one takes this observation into account, one concludes that the (un-normalised) wave-
function of such systems of indistinguishable particles has to have the form∣∣α1, α2, . . . , αN

}
=

1√
N !

∑
P

ξσ(P )
∣∣αP (1), αP (2), . . . , αP (N)

)
, (0.5)

where P represents one of the N ! possible permutations of the numbers {1, 2, . . . , N} and
ξ = ±1, having the plus sign for bosons and the minus sign for fermions. The function
σ(P ) is the order of the permutation, i.e. the number, modulo 2, of transpositions of two
numbers at a time that is necessary to perform in order to bring the N numbers in that
permutation to their natural order 1 < 2 < ... < N . It can be shown, e.g. by induction,
that a given permutation can always be decomposed into a product of transpositions.
Such a decomposition is not unique, but the number of transpositions necessary is either
even or odd and thus the order of a permutation is a well-defined quantity. Using the
orthonormal character of the basis of each individual particle, it is easy to convince
oneself that a second state

∣∣α′1, α′2, . . . , α′N} is orthogonal to
∣∣α1, α2, . . . , αN

}
unless the

set of the α′s constitute a permutation of α1, . . . , αN . Thus, one has

{
α1, α2, . . . , αN

∣∣α′1, α′2, . . . , α′N} =
∑
P

N∏
i

δαi,α′P (i)
||
∣∣α1, α2, . . . , αN

}
||2 , (0.6)
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where only one of the terms in the summation above is non-zero. Applying the definition
given in (0.5), one obtains for the square of the norm of

∣∣α1, α2, . . . , αN
}
the result{

α1, α2, . . . , αN
∣∣α1, α2, . . . , αN

}
=

1

N !

∑
P,P ′

ξσ(P )+σ(P ′)
(
αP ′(1), αP ′(2), . . . , αP ′(N)

∣∣αP (1), αP (2), . . . , αP (N)

)
(0.7)

=
1

N !

∑
P,P ′

ξσ(P )+σ(P ′)
(
α1, α2, . . . , αN

∣∣αP ′·P−1(1), αP ·P ′−1(2), . . . , αP ·P ′−1(N)

)
=
∑
P̃

ξσ(P̃ )
(
α1, α2, . . . , αN

∣∣αP̃ (1), αP̃ (2), . . . , αP̃ (N)

)
=
∑
P̃

ξσ(P̃ )〈α1|αP̃ (1)〉〈α2|αP̃ (2)〉 . . . 〈αN |αP̃ (N)〉

=

{
det [〈αi|αj〉] , for fermions
per [〈αi|αj〉] , for bosons

, (0.8)

where we have reordered the terms in the summation over P ′ on going from the first to
the second line of this equation, and have reordered the summation over P such that it is
performed over the permutation P̃ = P ·P ′−1, with σ(P̃ ) = σ(P ) +σ(P ′), on going from
the second to the third line. The summation over P ′ can then be performed and gives
a simple factor N !. Since the vectors are supposed to be orthonormal, the determinant
in (0.7) is equal to one if all αi’s are different and zero otherwise. The calculation of the
permanent is a bit more involved but is nevertheless trivial.
Suppose there are k different αs, α1, . . . , αk, such that nα1 + . . . + nαk = N . Since the
wave-function for bosons is symmetric, one can reorder the αs that are equal in a contigu-
ous fashion, i.e. we can write the wave-function as |α1, . . . , α1, α2, . . . , α2, . . . , αk, . . . , αk},
where α1 appears nα1 times, etc. From this construction, it is now easy to see that the
permanent that we wish to compute is that of a block-diagonal matrix in which each
block is solely constituted of 1s. Since the permanent of a matrix that is composed of
1s is equal to the factorial of its dimension and the dimensions of each block matrix are
nα1 , . . . , nαk , one sees that per[〈αi|αj〉] =

∏k
i=1 nαi !.

One now defines the creation operator through the relation∣∣µ, α1, . . . , αN
}

= c†µ
∣∣α1, . . . , αN

}
, (0.9)

i.e., this operator adds a particle in state µ to the many-particle state. If one wishes
to add two particles to the system, to states µ and ν (µ 6= ν), say, one may apply first
c†µ and then c†ν , obtaining |µ, ν, α1, . . . , αN} or the other way around, obtaining instead
|ν, µ, α1, . . . , αN}. However, since |ν, µ, α1, . . . , αN} = ξ|µ, ν, α1, . . . , αN}, one concludes
that

c†µc
†
ν − ξc†νc†µ = 0, (0.10)
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i.e. the creation operators commute in the case of bosons, but they anti-commute in
the case of fermions. The same rule has to apply to the adjoint operators cµ and cν , as
results from considering the adjoint of the above equation.
It follows from (0.9) that{

α1, α2, . . . , αN
∣∣cµ∣∣µ, α1, α2, . . . , αN

}
= ||

∣∣µ, α1, α2, . . . , αN
}
||2 . (0.11)

Since the above scalar product is non-zero (in the case of fermions, one assumes that µ is
different from all the αs), this implies that cµα1, . . . , αN = C(µ, α1, . . . , αN )

∣∣α1, . . . , αN
}
,

with

C(µ, α1, . . . , αN ) =
||
∣∣µ, α1, α2, . . . , αN

}
||2

||
∣∣α1, α2, . . . , αN

}
||2

= nµ(µ, α1, α2, . . . , αN ), (0.12)

where nν(µ, α1, α2, . . . , αN ) is the number of times the index µ appears in the series
µ, α1, α2, . . . , αN .

In the general case of a series of labels α1, . . . , αN , in which the first is not necessarily
equal to µ, the rule that generalizes this result and takes into account the symmetry of
the wave-function is

cµ
∣∣µ, α1, α2, . . . , αN

}
=

N∑
i=1

ξi−1δµ,αi
∣∣α1, . . . , αi−1, αi+1, . . . , αN

}
. (0.13)

Note in particular that the state with no particles, the vacuum, is annihilated by each
one of the operators cµ, i.e. cµ|0〉 = 0. Using (0.13), we now have[

cµc
†
ν − ξc†νcµ

]∣∣µ, α1, α2, . . . , αN
}

= δµ,ν
∣∣µ, α1, α2, . . . , αN

}
. (0.14)

Since the state
∣∣µ, α1, α2, . . . , αN

}
is arbitrary, we conclude that[
cµc
†
ν

]
−ξ = δµ,ν , (0.15)

i.e. these operators also obey commutation (ξ = 1) or anti-commutation (ξ = −1) re-
lations among themselves, but with a commutator or anti-commutator that is non-zero,
unlike above.
Note that the state that arises from the normalisation of

∣∣µ, α1, α2, . . . , αN
}

= c†α1 . . . c
†
αN |0〉

can be written, up to a reordering of the operators, as∣∣nα1 , nα2 , . . . , nαk
〉

=
(c†α1)nα1√

nα1 !
. . .

(c†αk)nαk√
nαk !

∣∣0〉, (0.16)

where solely the occupation number of each mode is displayed. This form is valid both
for bosons and fermions (but in the latter case, nα = 0, 1). It is relatively simple to show
from the closure relation (0.3), after symmetrisation or anti-symmetrisation, that this
set of states obeys the closure relation∑

{nα}

∣∣nα1 , nα2 , . . . , nαk
〉〈
nα1 , nα2 , . . . , nαk

∣∣ = Pξ, (0.17)
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where the sum is over all possible particle numbers on all possible modes and

Pξ =
∑
N

1

N !

∑
α1,...,αN

∑
P

ξσ(P )
∣∣α1, α2, . . . , αN

)(
µ, αP1 , αP2 , . . . , αPN

∣∣ (0.18)

is the symmetrisation or anti-symmetrisation operator of the wave-functions.

One last note on a change of basis in second quantisation. It is known from elementary
quantum mechanics that if {|αi〉} is a complete basis of the one-particle Hilbert space
and {|βj〉} is another complete basis, the two are related by an unitary transformation,
i.e. |βj〉 =

∑
i |αi〉U

†
ij , where Uji = 〈βj |αi〉. Since |αi〉 = c†αi |0〉 and βj〉 = c†βj |0〉, we

conclude that c†βj =
∑

i c
†
αiU

†
ij . The adjoint of this equation is the desired transformation

law

cβj =
∑
i

Ujicαi . (0.19)

This ends our crash course on second quantisation.
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1 One-particle operators in second quantization

A one-particle operator in a many-body system is an operator that acts on the state of
a single particle at a time. It is defined as B̂ =

∑N
i=1 B̂i where B̂i is given by

B̂i = 11 ⊗ . . .⊗ 1i−1 ⊗
∑
ν,µ

〈ν|b̂|µ〉|ν〉〈µ|i ⊗ 1i+1 ⊗ . . .⊗ 1N , (1.1)

where 〈ν|b̂|µ〉 are the matrix elements in one-particle quantum mechanics. In other words,
B̂i acts trivially in all Hilbert spaces, except in that of particle i.

(a) Applying B̂ to the state
∣∣α1, α2, . . . , αN

}
introduced above, show that one obtains

B̂
∣∣α1, α2, . . . , αN

}
=

1√
N !

∑
µ,ν

〈ν|b̂|µ〉

×
∑
i,P

ξσ(P )δµ,αP (i)
|αP (1)〉1 ⊗ . . .⊗ |ν〉i ⊗ . . .⊗ |αP (N)〉N . (1.2)

Note that we have explicitly labeled the one-particle states with a subscript to iden-
tify the subspace they belong to within the tensor product (0.2), e.g. |ν〉ibelongs to
the subspace of particle i.
(2 points)

(b) Show that one can write the last summation in (1.2) as∑
i,P

ξσ(P )δµ,αP (i)
|αP (1)〉1 ⊗ . . .⊗ |ν〉i ⊗ . . .⊗ |αP (N)〉N = (1.3)

∑
j,P

ξσ(P )δµ,αj |αP (1)〉1 ⊗ . . .⊗ |ν〉P−1(j) ⊗ . . .⊗ |αP (N)〉N . (1.4)

(2 points)
Hint: Note that

∑
j δj,P (i) = 1 for fixed i, as P (i) = j for some j, ε{1, . . . , N} since

any P is a bijective mapping of {1, . . . , N} in itself.

(c) Consider again∣∣α1, . . . , αj , . . . , αN
}

=
1√
N !

∑
P

ξσ(P )|αP (1)〉1 ⊗ . . .⊗ |νP (j)〉j ⊗ . . .⊗ |αP (N)〉N .

(1.5)

In which position in each of these terms is αj located? Note that I am not asking
where αP (j) is located, which is obviously at position j. From this observation and
using (1.3), prove the identity

1√
N !

∑
i,P

ξσ(P )δµ,αP (i)
|αP (1)〉1 ⊗ . . .⊗ |ν〉i ⊗ . . .⊗ |αP (N)〉N = (1.6)

∑
j

δµ,αj
∣∣α1, . . . , αj−1, ν, αj+1 . . . , αN

}
. (1.7)

(2 points)
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(d) Show that

c†νcµ
∣∣α1, . . . , αN

}
=
∑
j

δµ,αj
∣∣α1, . . . , αj−1, ν, αj+1 . . . , αN

}
. (1.8)

(2 points)
Hint: Use (0.13) and the symmetry properties of the wave-function under interchange
of particles.

(e) Thus, show that

B̂
∣∣α1, . . . , αN

}
=
∑
µ,ν

〈ν|b̂|µ〉c†νcµ
∣∣α1, . . . , αN

}
. (1.9)

(1 point)

Since the state
∣∣α1, . . . , αN

}
is arbitrary, we conclude that a one-particle operator is

given, in second quantisation, by

B̂ =
∑
µ,ν

〈ν|b̂|µ〉c†νcµ. (1.10)

2 The density operator in second quantization
(revision)

For a system of N identical particles (fermions) enclosed in a volume V with periodic
boundary conditions, the density operator at position r is defined (in its first quantised
form), as

ρ̂(r) =
N∑
i=1

δ(r − r̂i), (2.1)

where r̂i is the position operator of particle i. Note that r is not an operator.

(a) Show that the Fourier transform ρ̂q =
∫
V d

3re−iq·rρ̂(r) is given by

ρ̂q =
N∑
i=1

e−iq·r̂i . (2.2)

(1 point)

(b) The second quantisation representation of ρ̂(r), as follows from (1.10), is given by

ρ̂(r) =
∑
σ′,σ

∫
V
d3x′

∫
V
d3x〈x′σ′|δ(r − r̂)|xσ〉ψ̂†σ′(x

′)ψ̂σ(x), (2.3)
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where ψ̂σ(x) and ψ̂†σ(x) are the annihilation and creation operators for a fermion,
with spin projection along z equal to σ, at point x. Show from (2.3) that ρ̂(r) is
given by

ρ̂(r) =
∑
σ

ψ̂†σ(r)ψ̂σ(r). (2.4)

(2 points)

(c) Show that in second quantization the FT of ρ̂(r) is given by

ρ̂q =
N∑
i=1

ĉ†k−q,σ ĉk,σ. (2.5)

(2 points)
Hint: Substitute the relations ψ̂σ(r) = 1√

V

∑
k e

ik·r ĉk,σ, ψ̂
†
σ(r) = 1√

V

∑
k e
−ik·r ĉ†k,σ,

see (0.19), in the definition of the Fourier transform given above. Note that
∫
V d

3re−i(k−k
′)·r =

V δk,k′ .

(d) Show that ρ̂†q = ρ̂−q.
(1 point)

(e) Show that
[
ρ̂q, ρ̂q′

]
= 0.

(2 points)
Hint: Use the identities

[
Â, B̂, Ĉ

]
− =

[
Â, B̂

]
−ξĈ + ξB̂

[
Â, Ĉ

]
−ξ where ξ = ±1.

(f) Use the first quantisation representation of ρ̂q, as given in equation (2.2), to show
the previous identity.
(2 points)
Hint: What is

[
r̂i, r̂j

]
for arbitrary i, j?

(g) What is ρ̂q=0?
(1 point)

In the following exercise, we will consider a many-body system (enclosed in a volume V
with periodic boundary conditions), whose dynamics is described by an Hamiltonian Ĥ0

that is given by

Ĥ0 =
∑
k,σ

~2k2

2m
ĉ†k,σ ĉk,σ +

1

2

∑
q,k,k′,σ,σ′

V (q)ĉ†k−q,σ ĉ
†
k′+q,σ′ ĉk′,σ′ ĉk,σ (2.6)

where ĉk,σ, ĉ
†
k,σ are fermion operators, in the plane-wave basis, with a definite projection

σ of the spin along the z direction, satisfying anti-commutation relations. The function
V (q) is the Fourier transform of the two-body inter-electron (Coulomb) interaction, but
with the condition V (0) = 0, which takes into account in an approximate manner the
presence of the attractive potential due to the ions (jellium model). If one goes beyond
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such an approximation, the appropriate basis to express the Hamiltonian is no longer the
plane-wave basis, but it is instead the Bloch basis of states, which modifies the form of
the one-particle and two-particle terms. More importantly, the assumption of translation
invariance, made below, is no longer valid. A description of such a many-body system in
contact with an external environment is provided by the density-matrix, which generalises
the concept of wave-function to open systems. It is an Hermitian operator, which implies
that an orthonormal basis can be found that diagonalises such operator. In such a basis,
one has that

ρ̂0 =
∑
i

pi
∣∣ψi〉〈ψi∣∣, (2.7)

where 0 ≤ pi ≤ 1 are the eigenvalues of ρ̂0, which can be chosen such that
∑

i pi = 1
(normalisation of probability). If the system is in equilibrium with a thermal bath at
temperature T and with a reservoir of particles with the chemical potential µ (grand
canonical ensemble), ρ̂0 = 1

Z0
e−β(Ĥ0−µN̂), whereN =

∑
k,σ ĉ

†
k,σ ĉk,σ is the particle-number

operator of the system and Z0 = Tr(e−β(Ĥ0−µN̂)) is the grand canonical partition function
of the system, which acts as normalisation factor of the density matrix. Incidentally, Ω0 =
−kBT lnZ0 is the so-called grand canonical potential, which encodes all thermodynamic
information regarding the many-body system. Moreover, the thermal average of any
operator B̂ is defined as 〈B̂〉0 = Tr(B̂ρ̂0) and is a time-independent quantity, since ρ̂0
commutes with the Hamiltonian Ĥ0. Finally, note that in equilibrium, the basis that
diagonalises ρ̂0 is just the joint basis of eigenstates of Ĥ0 and N̂ (see also below).

3 Lehmann representation of the density-density
response function. Sum rules

Consider now that the many-body system is perturbed by a weak, space dependent
potential, which couples to the (local) density of particles. The full Hamiltonian Ĥ(t)
(in the Schrödinger representation) is given by

Ĥ(t) = Ĥ0 −
∫
V
d3r′φ(r′, t)ρ̂(r′), (3.1)

where φ(r, t) is a weak scalar potential.

(a) Repeating the steps performed in the lecture, show that to linear order in the scalar
potential, the change in the density of the system is given by

〈δρ̂(r)〉t =

∫
V
d3r′

∫ ∞
−∞

dt′χ(r, t− t′; r′, 0)φ(r′, t′), (3.2)

where χ(r, t; r′, t′) = i
hTr([δρ̂(r, t), δρ̂(r′, 0)])Θ(t) is the density-density linear re-

sponse function, where δρ̂(r, t) = eiĤ0t/~δρ̂(r)e−iĤ0t/~ with δρ̂(r) = ρ̂(r)− 〈ρ̂(r)〉0.
(3 points)
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(b) A system is said to possess translational invariance if a translation by an arbitrary
vector v of every argument of an N -point correlation function leaves such a function
invariant. In mathematical terms, this means that

GN (r1 + v, r2 + v, . . . , rN + v) = GN (r1, r2, . . . , rN ) (3.3)

(i) Show that the previous definition implies that G1(r) = g1, where g1 is a con-
stant independent of the position.
(1 point)

(ii) Show, by the same token, thatG2(r1, r2) = g2(r1−r2) where g2(r) is a function
depending on a single argument.
(1 point)
Hint: Choose the vector v appropriately in one case and the other.

(iii) Show that the FT G2(q1, q2) =
∫
V d

3r1
∫
V d

3r2e
−i(q1·r1+q2·r2)G2(r1, r2) is given,

in the case of translational invariance, by G2(q1, q2) = V δq1+q2,0g2(q1), where
g2(q) =

∫
V d

3re−iq·rg2(r).
(2 points)

(iv) Hence, show that for a system with translational invariance, the FT χ(q, t; q′, 0) =
V δq+q′,0χ(q, t), where χ(q, t) = i

~V Tr([δρ̂q(t), δρ̂−q(0)]ρ̂0)Θ(t).
(2 points)

(c) Using the completeness relation for the set of the eigenstates of Ĥ0, show that χ(q, t)
has the following Lehmann representation

χ(q, t) =
i

~V Z0

∑
n,m

∣∣〈n|δρ̂−q|m〉∣∣2e−iωn,mt(1− e−β~ωnm)e−β(Em−µNm)Θ(t), (3.4)

where ωnm = 1
~(En − Em).

(4 points)
Hint: Note that δρ̂†q = δρ̂−q. Moreover, do note that the eigenstates of Ĥ0 can be
chosen to be simultaneous eigenstates of N̂ , i.e., N̂ |n〉 = Nn|n〉, as [N̂ , Ĥ0] = 0,
since the total number of particles is conserved by the dynamics. Thus, show that
〈n|δρ̂−q|m〉 = 0 unless Nn = Nm, using the results of the previous exercise, items e
and g.

(d) Show from (3.4) that the Fourier transform of χ(q, t) is given by

χ(q, ω) =
i

~V Z0

∑
n,m

∣∣〈n|δρ̂−q|m〉∣∣2
ω − ωnm + iε

(1− e−β~ωnm)e−β(Em−µNm). (3.5)

(2 points)

(e) Show that one can write (3.5) also as

χ(q, ω) =

∫ ∞
−∞

dω′
1− e−β~ω′

ω′ − ω − iε
S(q, ω′), (3.6)
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where S(q, ω) is the so-called dynamic structure factor and is given by

S(q, ω) =
i

~V Z0

∑
n,m

∣∣〈n|δρ̂−q|m〉∣∣2e−β(Em−µNm)δ(ω − ωnm). (3.7)

(2 points)

(f) Show, taking into account the properties of S(q, ω), that

Reχ(q, ω) = P

∫ ∞
−∞

dω′
1− eβ~ω′

ω′ − ω
S(q, ω), (3.8)

Imχ(q, ω) = π(1− eβ~ω′)S(q, ω), (3.9)

and hence show that these two equations imply the first Kramers-Kronig relation
for χ(q, ω).
(3 points)

(g) Show from (3.7) that S(q,−ω) = e−β~ωS(−q, ω). If the Hamiltonian of the system
is invariant under time-reversal or space-inversion (or both) S(−q, ω) = S(q, ω).
Conclude that in such a case S(q,−ω) = e−β~ωS(q, ω). This relation is known as
the detailed-balance relation (already derived in the lecture using a different method).
(2 points)
Hint: Note that one may relabel the summation indices in (3.7).

(h) Show, using the previous result and (3.9), that Imχ(q, ω) = π(S(q, ω)−S(−q,−ω)).
If the system is invariant under time-reversal or space-inversion, show that Imχ(q,−ω) =
π(S(q, ω)− S(q,−ω)).
(1 point)

(i) Show, using (3.9), as well as the definition of S(q, ω), that∫ ∞
−∞

dω′
Imχ(q, ω′)

ω′
=

π

~V Z0

∑
n,m

∣∣〈n|δρ̂−q|m〉∣∣2
ω′nm

(
1− e−β~ωnm

)
e−β(Em−µNm). (3.10)

(2 points)

(j) Show that one can rewrite the RHS of (3.10) such that it now reads∫ ∞
−∞

dω′
Imχ(q, ω′)

ω′
=
π

V

∫ β

0
dλTr(δρ̂q(−i~λ)δρ̂−q(0)ρ̂0), (3.11)

where δρ̂q(−i~λ) = eλĤ0δρ̂qe
−λĤ0

(2 points)
Hint:

∫ β
0 dλe

−λ~ωnm = 1−e−β~ωnm
~ωnm .
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(k) Finally, show that in the limit q → 0, one has

lim
q→0

∫ ∞
−∞

dω′
Imχ(q, ω′)

ω′
=
πβ

V
〈(N̂ − 〈N̂〉0)2〉0. (3.12)

(3 points)
Hint: What is [N̂ , Ĥ0]?

(l) Show that

∂〈N̂〉0
∂µ

∣∣∣
T,V

= β〈(N̂ − 〈N̂〉0)2〉0. (3.13)

(2 points)
Hint: Use the definition 〈N̂0〉 = 1

Z0

∑
mNme

−β(Em−µNm) and differentiate with re-
spect to µ.

(m) Consider the case in which the system is invariant under time-reversal or space-
inversion. Use the thermodynamic identity ∂〈N̂〉0

∂µ

∣∣
T,V

= V n2κT where n = 〈N̂〉0/V
is the density of electrons and κT = − 1

V
∂V
∂P

∣∣
T,N

is the isothermal compressibility of
the system, to show that

lim
q→0

∫ ∞
−∞

dω′
S(q, ω′)

ω′
=

1

2
n2κT . (3.14)

This relation is known as the compressibility sum rule.
(2 points)

(n) Show that

Tr
(
[δρ̂q, [Ĥ0, δρ̂−q]]ρ̂0

)
=

~
Z0

∑
n,m

ωnm
[∣∣〈n|δρ̂−q|m〉∣∣2 +

∣∣〈n|δρ̂q|m〉∣∣2] (3.15)

× e−β(Em−µNm). (3.16)

(2 points)

(o) Thus, show that

1

~2V
Tr
(
[δρ̂q, [Ĥ0, δρ̂−q]]ρ̂0

)
=

∫ ∞
−∞

dω′ω′[S(q, ω′) + S(−q, ω′)]. (3.17)

(2 points)

(p) Show that this relation is equivalent to

1

~2V
Tr
(
[δρ̂q, [Ĥ0, δρ̂−q]]ρ̂0

)
=

1

π

∫ ∞
−∞

dω′ω′Imχ(q, ω′). (3.18)

This is of course just a particular case of the series of sum-rules derived in the
lecture.
(1 point)
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(q) Now, show that [δρ̂q, [Ĥ0, δρ̂−q]] = ~2q2
m N̂ .

(3 points)
Hint: Write the second term of (2.6) as an expression involving a sum of products of
densities ρ̂q′ ρ̂−q′ and use the result of Exercise 2e to show that such a term commutes
with δρ̂−q. The terms in the commutator arising from the first term of (2.6) yield
the desired result.

(r) Thus, show that ∫ ∞
−∞

dω′ω′Imχ(q, ω′) =
πnq2

m
, (3.19)

where n is, as above, the electron density of the system.
(1 point)

(s) Show that for a system that is invariant under time-reversal or space-inversion, one
has ∫ ∞

−∞
dω′ω′S(q, ω′) =

nq2

m
, (3.20)

This relation is know as the f-sum rule.
(2 points)

4 The single mode approximation

In the previous exercise, we derived the sum rules assuming a many-body system where
fermions interact through the Coulomb interaction. However, a little thought shows that
the same conclusions will hold with a different form of the interaction provided that it
involves only the density of particles of the system (in fact, we did not even use a definite
form for V (q)). Moreover, the same results would have followed if we had considered
interacting bosons, rather than fermions (you may wish to check that explicitly). We
now consider an uncharged system and postulate a specific form for S(q, ω), namely

S(q, ω) = F (q)
[
δ(ω − ωq) + eβ~ωδ(ω + ωq)

]
, (4.1)

where ωq > 0 is the frequency of the excitations and F (q) is an unknown amplitude.

(a) Show that S(q, ω) obeys the detailed-balance relation.
(2 points)

(b) Show that F (q) is related to the static structure factor S(q) =
∫∞
−∞ dωS(q, ω) by

F (q) = S(q)/(1 + e−β~ωq).
(1 point)

(c) Show from the f-sum rule that ωq is related to S(q) by ωq tanh
(β~ωq

2

)
= nq2

2mS(q) .
(2 points)
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(d) Show that from the compressibility sum rule that limq→0
S(q)
ωq

tanh
(β~ωq

2

)
= 1

2n
2κT .

(2 points)

(e) Show that these two relations imply that at small q,ωq = cs|q|, where c−2s = nmκT .
What is the physical meaning of cs?
(2 points) Hint: What are the units of cs?

(f) Show that at small q, S(q) = n|q|
2mcs

tanh−1
(β~cs|q|

2

)
. Study the different limits T = 0

(β →∞) and T 6= 0.
(3 points)

(g) Finally, use (3.6) with the postulated form for S(q, ω), to show that

χ(q, ω) = −nq
2

m

1

(ω + iε)2 − ω2
q

. (4.2)

Discuss in particular the limit of small q.
(3 points)

This exercise should illustrate the usefulness of the sum rules derived above.
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