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2. Exercise Sheet

Mini-Review: The time-evolution operator

Before we ask you to perform any calculations we will briefly review the properties of
the time evolution operator in quantum mechanics. In Dirac ket notation, one writes the
Schrödinger equation as

i~
∂

∂t
|ψt〉 = Ĥ(t)|ψt〉, (4.1)

where the Hamiltonian Ĥ(t) may have an explicit time dependence. Introducing the
time-evolution operator Û(t, t′) (with t > t′), through the relation |ψt〉 = Û(t, t′)|ψt′〉,
one sees by direct substitution in (4.1) that Û(t, t′) obeys the Schrödinger equation

i~
∂

∂t
Û(t, t′) = Ĥ(t)Û(t, t′), (4.2)

with the boundary condition Û(t′, t′) = 1, since limt→t′ |ψt〉 = |ψt′〉 by continuity of the
wave-function in time. Also, for any t > u > t′, one has that |ψt〉 = Û(t, u)|ψu〉 and
|ψu〉 = Û(u, t′)|ψt′〉 and thus substituting the latter equation in the former, we conclude
that

Û(t, t′) = Û(t, u)Û(u, t′), (4.3)
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with t > u > t′. This is known as the semi-group property of Û(t, t′). The equation (4.2)
is equivalent to the integral equation

Û(t, t′) = 1− i

~

∫ t

t′
du Ĥ(u)Û(u, t′), (4.4)

which already takes into account the boundary condition at t = t′. Substituting the
expression for Û(u, t′) as given by (4.4) in (4.4) itself and iterating the resulting equation,
one sees that Û(t, t′) =

∑∞
n=0 Ûn(t, t′) where Ûn(t, t′) is given by

Ûn(t, t′) =
(−i)n

~n

∫ t

t′
dt1

∫ t1

t′
dt2 . . .

∫ tn−1

t′
dtn Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) (4.5)

=
(−i)n

~n

∫ t

t′
dt1

∫ t

t′
dt2 . . .

∫ t

t′
dtn Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)Θ(t1 − t2) . . .Θ(tn−1 − tn),

where we have used the Θ-functions to rewrite all integrals with the same upper limit.
Once can now permute the n dummy indices t1, . . . , tn, provided one divides the end
result by the total number of permutations, n!. One obtains

Û(t, t′) =
∞∑
n=0

(−i)n

n!~n

∫ t

t′
dt1

∫ t1

t′
dt2 . . .

∫ tn−1

t′
dtnT{Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)} (4.6)

= T exp
(
− i

~

∫ t

t′
du Ĥ(u)

)
, (4.7)

where T is the time-ordering operator that orders the Hamiltonian operator at different
times in chronological order. The time-ordered exponential in (4.7) is defined in terms
of the series in (4.6) and is merely a compact way of writing this series. If Ĥ(u) = Ĥ0,
which is time-independent, then the time-ordering in (4.6) becomes a simple product and
one may sum the series, obtaining

Û(t, t′) = exp
(
− i

~
Ĥ0(t− t′)

)
, (4.8)

which is only dependent on the difference t − t′. Note, as an aside, that if one can
write the Hamiltonian as Ĥ(t) = Ĥ0 + V̂ (t), where the quantum dynamical problem
defined by Ĥ0 is solvable and V̂ (t) is an interaction term, eventually dependent on time
in the Schrödinger representation, one may define the time-evolution in the interaction
representation by Ŝ(t, t′) = eiĤ0t/~Û(t, t′)e−iĤ0t/~. The equation obeyed by Ŝ(t, t′) is
given, using (4.2), by

i~
∂

∂t
Ŝ(t, t′) = V̂ I(t)Ŝ(t, t′), (4.9)

where V̂ I(t) = eiĤ0t/~V̂ (t)e−iĤ0t/~ is the interaction term in the interaction representa-
tion. Note that even if V̂ (t) = V̂ is time-independent in the Schrödinger representation,
it will in general be explicitly time-dependent in the interaction representation (unless
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[Ĥ0, V̂ ]− = 0, but in that case these two operators have common eigenstates and the
problem is solved as soon as we know the eigenstates of Ĥ0). One can now repeat the
analysis above, obtaining

Ŝ(t, t′) = T exp
(
− i

~

∫ t

t′
du V̂ I(u)

)
, (4.10)

with the same boundary condition and with the semi-group property also holding for
Ŝ(t, t′). This is the expression obtained in the lecture and ends our crash course.

5 Green function for the one-particle Schrödinger
equation

(a) For a single-particle problem, one defines the wave-function of such a particle in
real space by ψ(r, t) = 〈r|ψt〉. Given that ψ(r, t) = 〈r|Û(t, 0)|ψ0〉 where |ψ0〉 is the
wave-function at t = 0, show that ψ(r, t) satisfies the integral equation

ψ(r, t) = i~
∫
d3r′GR(r, t; r′, t′)ψ(r′, t), (5.1)

with t > t′ and whereGR(r, t; r′, t′) = − i
~
〈r|Û(t, t′)|r′〉Θ(t−t′) is the Green function

(also known as the propagator) of the Schrödinger equation.
(2 points)

Hint: Use the semi-group property (4.3) and the completeness of the basis of the
position eigenstates, i.e. the relation

∫
d3r′|r′〉〈r′| = 1.

(b) Consider now the case in which the Hamiltonian does not depend on time and thus
Û(t, t′) reduces to (4.8). Show that in such a case, one may write

GR(r, t− t′; r′, 0) = − i
~
∑
α

φα(r)φ∗α(r′)e−iεα(t−t
′)/~Θ(t− t′), (5.2)

where φα(r) = 〈r|φα〉 and φα〉 are the eigenstates of Ĥ0 with εα being the cor-
responding eigen-energies, i.e. Ĥ0|φα〉 = εα|φα〉. This is known as the spectral
representation of the Green function.
(2 points)
Hint: Use the completeness of the eigenstates of the Hamiltonian, i.e., the relation∑

α |φα〉〈φα| = 1.

(c) Show that the Fourier transform of (5.2) is given by

GR(r, r′, ω) =
i

~
∑
α

φα(r)φα(r′)

ω − ωα + iε
, (5.3)

where ωα = εα/~ and where the infinitesimal factor iε was introduced in the expo-
nent of the Fourier transform in order to insure convergence.
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(d) Show that ρ(ω) = −~
π

∫
d3r ImGR(r, r, ω) is given by

ρ(ω) =
∑
α

δ(ω − ωα). (5.4)

This quantity is known as the density of states of the Hamiltonian, since the inte-
gration of ρ(ω) within a given frequency interval counts the number of states inside
that interval. If the spectrum is discrete, such density of states will be a sum of
delta-peaks, but it may have an analytic form in the case of a continuous spectrum.
(2 points)
Hint: Use the definition of ρ(ω), the fact that |φα〉 are normalized states and the

Dirac relation
1

x+ iε
= P

(1

x

)
− iπδ(x).

6 Time-evolution of annihilation and creation
operators in a many-body system described by a

quadratic Hamiltonian and Wick’s theorem at finite
temperatures

(a) Derive the equation of motion for the annihilation and creation operators in the
Heisenberg representation in imaginary time for a system of independent bosons
(fermions) whose Hamiltonian is given by

Ĥ0 =
∑
ν

εν ĉ
†
ν ĉν , (6.1)

where the operators obey commutation (anti-commutation) relations given by (0.10)
and (0.15) (see exercise sheet 1). Note that these operators are given in the Heisen-
berg representation in imaginary time by

ĉα(τ) = eĤ0τ ĉαe
−Ĥ0τ , (6.2)

ĉ†α(τ) = eĤ0τ ĉ†αe
−Ĥ0τ . (6.3)

Show that these equations have the solution

ĉα(τ) = ĉαe
−εατ , (6.4)

ĉ†α(τ) = ĉ†αe
εατ . (6.5)

Do note that in imaginary time ĉα(τ) and ĉ†α(τ) are not each other’s adjoint, except
at τ = 0. However, if one makes the analytic continuation τ → it/~, one does obtain
the correct time evolution of these operators in real time.
(3 points)
Hint: Solve explicitly the differential equation for these operators as an initial value
problem (one knows to which operators ĉα(τ) and ĉ†α(τ) have to reduce at τ = 0).
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(b) We defined 〈Â〉 =
1

Z0
Tr
(
Âe−β(Ĥ0−µN̂

)
. Show that if Ĥ0 is given by (6.1), 〈ĉ†αĉγ〉 =

nαδα,γ , where nα =
1

eβ(εα−µ) − ξ
, with ξ = ±1, for bosons or fermions. These func-

tions correspond, respectively, to the Bose-Einstein and Fermi-Dirac distributions
for bosons or fermions. Show that 〈ĉγ ĉ

†
α〉 = (1 + ξnγ)δα,γ .

(2 points)
Hint: Use the (anti-)commutation relations between the annihilation and creation
operators to interchange them inside the average and use (6.2) to (6.5) to show the
identities ĉγ e−β(Ĥ0−µN̂) = e−β(Ĥ0−µN̂)ĉγe

−β(εγ−µ) and
ĉ†γ e−β(Ĥ0−µN̂) = e−β(Ĥ0−µN̂)ĉ†γeβ(εγ−µ). Note that the operator ĤGC = Ĥ0 − µN̂ ,
where N̂ =

∑
ν ĉ
†
ν ĉν , is of the same form as Ĥ0, it simply involves renormalised

energies εν = εν − µ. Finally, use the cyclic invariance of the trace.

(c) Following the same steps as in the previous exercise, show that

〈ĉ†αĉγ ĉ†χĉη〉 = nαnχδα,γδχ,η + nα
(
1 + ξnγ

)
δα,ηδγ,χ. (6.6)

(2 points)

(d) Finally, consider the general case of 〈Â1Â2 . . . ÂN 〉 where each Âi (i = 1, . . . , N) is
either an annihilation or creation operator in the basis that diagonalizes Ĥ0, which
is of the form (6.1). Thus, the (anti-)commutator [Âi, Âj ]−ξ for arbitrary i and j is
a c-number. Show that

〈Â1Â2 . . . ÂN 〉 =
1

1− ξN−1e∓β(ε1−µ)
N∑
i=2

ξi−2[Â1, Âi]−ξ 〈Â2 . . . Âi−1Âi+1 . . . ÂN 〉,

(6.7)

where the ∓ sign depends on whether Â1 is, respectively, an annihilation or creation
operator. Note that the averages appearing on the right-hand side involve two an-
nihilation or creation operators less and are of the same form as the one we started
from. We can thus iterate this formula until we have reduced it to products of com-

mutators and functions of the type
1

1− ξM−1e∓β(εi−µ)
. This constitutes Gaudin’s

proof of Wick’s theorem at finite temperature and can even be generalized to the
case where the operators Âi are given in the interaction representation.
(4 points)

7 Retarded many-body Green function for a boson
system with a quadratic Hamiltonian

Take the Hamiltonian describing the many-particle system to be of the form (6.1). Show
that the retarded many-body Green functionGR(r, t; r′, t′) = − i

~〈[ψ̂(r, t), ψ̂†(r′, t′)]−〉Θ(t−
t′), where ψ̂(r, t) = eiĤ0t/~ψ̂(r)e−iĤ0t/~, ψ̂†(r, t) = e−iĤ0t/~ψ̂†(r)eiĤ0t/~, is exactly given
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by the expression (5.2).
(4 points)
Hint: Express the operators ψ̂(r, t) and ψ̂†(r, t) in terms of the operators that diagonal-
ize the Hamiltonian Ĥ0, ψ̂(r, t) =

∑
α φα(r)ĉα(t) and ψ̂†(r, t) =

∑
α φ
∗
α(r)ĉ†α(t) and use

their known time-evolution to compute their commutator.

8 Free-fermion observables expressed in terms of
particle-hole operators and ground-state properties

of the Fermi gas

The ground state of a free-fermion system with N fermions of spin 1/2, described by the
Hamiltonian Ĥ0 =

∑
k,σ εkĉ

†
k,σ ĉk,σ with ε−k = εk is given by |φ0〉 =

∏
|k|<kF ,σ ĉ

†
k,σ|0〉,

which is a Slater determinant, with all states with momentum less than kF occupied
with two fermions (of opposite spin) and all states with momentum greater than kF
being left empty. The value of kF is chosen so that the number of particles in the system
is equal to N . This state is not the vacuum for all of the annihilation operators ĉk,σ,
e.g. if |k| < kF then ĉk,σ|φ0〉 6= 0. It is thus convenient to define a set of annihilation
or creation operators such that |φ0〉 acts as the vacuum of such a set of operators. The
particle-hole creation and annihilation operators are defined through

α̂k,σ = ĉk,σ, α̂†k,σ = ĉ†k,σ if |k| > kF , (8.1)

β̂k,σ = ĉ†−k,−σ, β̂†k,σ = ĉ−k,−σ if |k| > kF . (8.2)

(a) Show that the new operators obey the correct anticommutation relations for fermions,
i.e., that the transformation defined above is canonical.
(2 points)

(b) Show that α̂k,σ|φ0〉 = 0 and β̂k,σ|φ0〉 = 0, thus proving that the |φ0〉 is the vacuum
for this set of operators.
(2 points)

(c) Show that one can express the operators of the total energy, momentum, and pro-
jection of the spin along the z-axis for a free-fermion system as

N̂ = N +
∑

|k|>kF ,σ

α̂†k,σα̂k,σ −
∑

|k|≤kF ,σ

β̂†k,σβ̂k,σ (8.3)

Ĥ0 = E0 +
∑

|k|>kF ,σ

εk α̂
†
k,σα̂k,σ −

∑
|k|≤kF ,σ

εk β̂
†
k,σβ̂k,σ (8.4)

P̂ =
∑

|k|>kF ,σ

~k α̂†k,σα̂k,σ +
∑

|k|≤kF ,σ

~k β̂†k,σβ̂k,σ (8.5)

Sz =
~
2

[ ∑
|k|>kF ,σ

σ α̂†k,σα̂k,σ +
∑

|k|≤kF ,σ

σ β̂†k,σβ̂k,σ

]
, (8.6)
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where N =
∑

k≤kF ,σ 1 is the total number of particles in the ground state (this
expression actually fixes the value of kF ) and E0 =

∑
k≤kF ,σ εk is the ground state

energy of the Fermi gas (one assumes that the system is placed in a finite box of
volume V with periodic boundary conditions).
(4 points)

(d) Show that the density n = N/V is given, in the limit of large volume V , in terms of

the Fermi momentum kF , by n =
k3F
3π2

(in three dimensions).
(2 points)
Hint: Use 1

V

∑
k ≈

1
(2π)3

∫
d3k at large V .

(e) One has that εk =
~2k2

2m
for a non-relativistic system of massive fermions. Show that

the energy density e0 = E0/V is given as a function of n by e0 =
(3π2)5/3~2

10π2m
n5/3

(for large V ).
(2 points)

(f) Finally, compute the chemical potential of the system µ =
∂e0
∂n

in the ground state

and show that µ =
~2k2F
2m

, i.e., it is equal to the Fermi energy (at T = 0).
(2 points)

9 Dynamic structure factor for the Fermi gas

We consider a system of free fermions described by the Hamiltonian Ĥ0 =
∑

k,σ εkĉ
†
k,σ ĉk,σ

with εk =
~2k2

2m
. We wish to compute the value of S(q, t) =

∫∞
−∞dω S(q, ω)e−iωt, where

the dynamic structure factor S(q, ω) is defined in (3.7) (see exercise sheet 1). Performing
the integral over ω, one can show that S(q, t) is given by

S(q, t) =
1

~V
(
〈ρ̂q(t)ρ̂−q(0)〉 − 〈ρ̂q(t)〉〈ρ̂−q(0)〉

)
, (9.1)

where ρ̂q(t) = eiĤ0t/~ρ̂qe
−iĤ0t/~ and where ρ̂q is given by equation (2.5) (see exercise

sheet 1).

(a) Show that for a free fermion system S(q, t) =
1

~V
∑

k,σ nk,σ(1 − nk+q,σ)e−iζk,qt,

where ζk,q =
1

~
(
εk+q − εk

)
and where nk,σ =

1

eβ(εk−µ) + 1
is the Fermi-Dirac dis-

tribution.
(4 points)
Hint: Use the time evolution of the annihilation and creation operator in a system
with a quadratic Hamiltonian and then apply the results of exercise 6c to compute
the resulting average values.
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(b) Show that S(q) = S(q, t = 0) is strictly positive, as it should be.
(1 point)

(c) Performing the Fourier transform, one can trivially obtain

S(q, ω) =
1

~V
∑
k,σ

nk,σ(1− nk+q,σ)δ(ω − ζk,q). (9.2)

Show that this expression can also be written as

S(q, ω) =
1

~V
∑
k,σ

nk,σ

1− eβ~ζk,q
[
δ(ω − ζk,q) + eβ~ωδ(ω + ζk,q)

]
, (9.3)

which is very reminiscent of equation (4.1) for the single mode approximation, see
exercise 4.
(4 points)

Hint: Use the identity nk,σ(1 − nk+q,σ) =
nk,σ − nk+q,σ

1− eβ~ζk,q
(verify explicitly) in (9.2)

and then perform an appropriate shift of the summation over k in one of the terms,
taking into account that ζ−k−q,q = −ζk,q.

(d) Substitute (9.3) in (3.6) (see exercise sheet 1) and perform the integral over ω′ to
obtain

χ(q, ω) = − 2

~V
∑
k,σ

ζk,qnk,σ
(ω + iε)2 − ζ2k,q

, (9.4)

which is the Lindhardt function.
(2 points)

(e) Show that one has ∫ ∞
−∞

dω ω S(q, ω) =
1

~V
∑
k,σ

nk,σζk,q =
nq2

2m
, (9.5)

and thus that the dynamical structure factor satisfies the f-sum rule.
(3 points)
Hint: Note that n−k,σ = nk,σ.
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