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3. Exercise Sheet

10 Lindhardt function in the long-time and
long-wavelength limit

(a) Consider the expression we obtained for the dynamic structure factor of a free elec-
tron gas, i.e., equation (9.2)

S(q, ω) =
1

~V
∑
k,σ

nk,σ(1− nk+q,σ)δ(ω − ξk,q) (10.1)

Show that you can rewrite this equation as

S(q, ω) =
1

~V (1− e−β~ω)

∑
k,σ

(nk,σ − nk+q,σ)δ(ω − ξk,q) (10.2)

with ξk,q = 1
~(εk+q − εk) where εk =

~2k2

2m
.

(1 point)

Hint: Use the identity nk,σ(1− nk+q,σ) =
nk,σ − nk+q,σ

1− e−βξk,q
in (10.1).

(b) Substitute (10.2) in (3.6) (see problem sheet 1) and perform the integral over ω′ to
obtain

χ(q, ω) = − 1

~V
∑
k,σ

nk,σ − nk+q,σ

ω + iδ − ξk,q
. (10.3)
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This is an alternative representation of χ(q, ω) that is more useful for the solution
of this problem.
(2 points)

(c) Show that in the limit q → 0 and to linear order, one has ξk,q ≈
~k · q
m

and

nk,σ − nk+q,σ ≈
∂nk,σ
∂µ

· ~
2k · q
m

. Note that nk,σ =
1

eβ(εk) + 1
.

(2 points)

(d) Hence, show that in such a limit

χ(q, ω) = − 1

V

∑
k,σ

q · vk
ω + iδ − q · vk

·
∂nk,σ
∂µ

, (10.4)

where vk =
~k
m

is the velocity of a particle with wave-number k.
(2 points)

(e) Show from (10.4) that limq→0 χ(q, 0) = n2κT and hence that the response function
χ(q, ω) satisfies the compressibility sum rule.
(2 points)

(f) At T = 0,
∂nk,σ
∂µ

= δ(εk − µ). Thus, show that

χ(q, 0) =
1

V

∑
k,σ

δ(εk − µ) =
mkF
π2~2

. (10.5)

The quantity ρ(µ) =
1

V

∑
k,σ δ(εk − µ) =

mkF
π2~2

is the density of states (per unit
volume) at the Fermi level.
(2 points)
Hint: In the limit of large V , convert the sum above in an integral over k (see
exercise sheet 2) and perform such an integral.

(g) Use (10.5) to show that κT=0 =
31/3m

~2π4/3n5/3
.

(2 points)
Hint: Note that kF = (3π2n)1/3.

(h) Consider a classical perfect gas, with the equation of state P = nkBT . Show that

κT = − 1

V

∂V

∂P

∣∣∣
T,N

=
1

P
=

1

nkBT
.

(2 points)

(i) In the limit T → 0, the compressibility of a classical perfect gas would diverge (this
result is meaningless, as the classical perfect gas model is only valid at sufficiently
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high temperatures and low densities). However, the compressibility of the free Femi
gas does not diverge at zero temperature and, moreover, it decreases with a higher
power of the density ( i.e. with n−5/3). Remember that in a free Fermi gas, there
are no interactions between the fermions. Thus, what physical effect is responsible
for keeping the compressibility finite at T = 0?
(2 points)

(j) Show from (10.4) that at T = 0 (for q 6= 0), one obtains

χ(q, ω) = ρ(µ)
[
1− λ

2
ln
(λ+ 1

λ− 1

)]
, (10.6)

where λ =
ω

qvF
, with vF =

~kF
m

being the velocity of a particle at the Fermi surface.

The quantity ρ(µ) is the density of states at the Fermi level, introduced above.
(4 extra points)

Hint: Use
∂nk,σ
∂µ

= δ(εk − µ) in (10.4), convert the sum over k into an integral and

perform such integral using spherical coordinates. Do note that since q is a fixed
vector, you can choose the z-axis in the integral over k to be along q.

11 Analytic properties of the causal Green function

The properties of the retarded, advanced, and Matsubara Green functions were covered
extensively during class. Here, we will consider instead the properties of the causal Green
function in real time. This quantity is defined, in a given basis of operators, by

Gαγ(t, t′) = − i
~
〈T{ĉα(t)ĉ†γ(t′)}〉 (11.1)

= − i
~
[
G>αγ(t, t′)Θ(t− t′) + ζG<αγ(t, t′)Θ(t′ − t)

]
, (11.2)

where ζ = +1 (ζ = −1) for bosons (fermions), T is the time-ordering operator and
G>αγ(t, t′) = 〈ĉα(t)ĉ†γ(t′)〉, G<αγ(t, t′) = 〈ĉ†α(t′)ĉγ(t)〉.

(a) The above functions can be written as

G>αγ(t, t′) =
1

Z0
Tr
(
ĉα(t)ĉ†γ(t′)e−β(Ĥ0−µN̂)

)
, (11.3)

and

G<αγ(t, t′) =
1

Z0
Tr
(
ĉ†γ(t′)ĉα(t)e−β(Ĥ0−µN̂)

)
, (11.4)

where Ĥ0 is a many-body Hamiltonian such that [N̂ , Ĥ0] = 0, and ĉα(t) = eiĤ0t/~ĉαe
−iĤ0t/~

and ĉ†γ(t′) = eiĤ0t/~ĉ†γe−iĤ0t/~ are the annihilation and creation operators in the
Heisenberg representation. Show from their representation that they only depend
on the difference t− t′.
(2 points)
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(b) Thus, it is enough to consider G>αγ(t) = 〈ĉα(t)ĉ†γ〉 and G<αγ(t) = 〈ĉ†γ ĉα(t)〉. Show
that these functions are connected by the identity G>αγ(t− iβ~) = e−βµG<αγ(t).
(3 points)
Hint: Use the identity e−βµN̂ ĉ†γeβµN̂ = ĉ†γe−βµ (proving it is part of the exercise) in
the expression for G>αγ(t− iβ~) and then apply the cyclic invariance of the trace.

(c) Use the result proven in (b) to show that the Fourier transforms of these functions,
G>αγ(ω) =

∫∞
−∞dt e

iωtG>αγ(t), and are related by G<αγ(ω) =
∫∞
−∞dt e

iωtG<αγ(t) are
related by

G<αγ(ω) = e−β(~ω−µ)G>αγ(ω). (11.5)

(2 points)
Hint: Substitute G<αγ(t) = eβµG>αγ(t − iβ~) in its Fourier transform and express
G>αγ(t− iβ~) in terms of G>αγ(ω) itself.

(d) Since G>αγ(t − t′) and G<αγ(t − t′) only depend on the difference t − t′, the same is
true for Gαγ(t, t′), see (11.1). Thus, one can also consider the Fourier transform
Gαγ(ω) =

∫∞
−∞dt e

iωtGαγ(t). Show that Gαγ(ω) is related to G>αγ(ω) by

Gαγ(ω) =

∫ ∞
−∞

dω′

2π~
G>αγ(ω′)

( 1

ω − ω′ + iδ
− ζe−β(~ω

′−µ)

ω − ω′ − iδ

)
, (11.6)

where the infinitesimal factors ±iδ are introduced in the Fourier exponents to ensure
convergence.
(3 points)

(e) Define the function Aαγ(ω) = G>αγ(ω)(1−ζe−β(~ω−µ))/(2π) (spectral density). Show
that one can write (11.6) as

Gαγ(ω) = P

∫ ∞
−∞

dω′

~
Aαγ(ω′)

ω − ω′
− iπ

~
Aαγ(ω)


tanh−1

(β(~ω − µ)

2

)
tanh

(β(~ω − µ)

2

) , (11.7)

where the result in the top of the brackets applies in the case of bosons and the result
in the bottom applies in the case of fermions. The symbol P denotes the principal
part of the integral.

(2 points) Hint: Use the Dirac relation
1

ω − ω′ ± iδ
= P

1

ω − ω′
∓ iπδ(ω − ω′) in

(11.6).

(f) Show that G>αγ(ω) has the following Lehmann representation in terms of the eigen-
states |m〉 and |n〉 of Ĥ0

G>αγ(ω) =
2π

Z0

∑
m,n

〈m|ĉα|n〉〈n|ĉ†γ |m〉δ(ω − ωnm)e−β(EM−µNm), (11.8)
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where ωnm =
1

~
(En − Em).

(2 points)
Hint: First obtain the Lehmann representation forG<αγ(t) and then Fourier transform
the result obtained.

(g) Show from (11.8) that G>αα(ω) is a real (and positive definite) function. Hence show
that Aαα(ω) is also real, and being positive definite for fermions and being positive
or negative in the case of bosons, depending on whether ~ω > µ or ~ω < µ.
(2 points)

(h) Show that Gαα(ω) obeys the following Kramers-Kronig relation

ReGαα(ω) = −P
∫ ∞
−∞

dω′

π

ImGαα(ω)

ω − ω′


tanh

(β(~ω − µ)

2

)
tanh−1

(β(~ω − µ)

2

) (11.9)

where the result in the top of the bracket appliesto bosons and the result in the
bottom in the case of fermions.
(2 points)

(i) Show that Aαγ(ω) is given by the following Lehmann representation

Aαγ(ω) =
1

Z0

∑
m,n

〈m|ĉα|n〉〈n|ĉ†γ |m〉δ(ω − ωnm)
(
e−β(Em−µNm) − ζe−β(En−µNn)

)
,

(11.10)

where Nn = Nm + 1. Show from (11.10) that
∫∞
−∞dω Aαγ(ω) = δα,γ .

(4 extra points)

(j) Suppose that Ĥ0 =
∑

ν εν ĉ
†
ν ĉν , i.e., Ĥ0 is a one-body Hamiltonian and we consider

the Green function in the basis that diagonalizes Ĥ0. Show that

(i) G>αγ(ω) = 2πδα,γ(1 + ζnα)δ(ω − ωα), where nα =
1

eβ(εα−µ) − ζ
and ωα = ε/~.

(2 points)
Hint: Use the results of problem 6a and 6b (see exercise sheet 2) to compute
G>αγ(t) and then perform a Fourier transform.

(ii) Show that Aαγ(ω) = δα,γδ(ω − ωα) and show that these functions obey the
sum rule derived above,

∫∞
−∞dω Aαγ(ω) = δα,γ .

(2 points)

(iii) Finally, show that Gαγ(ω) is given in this case by

Gαγ(ω) =
δα,γ
~

(
P

1

ω − ωα
− iπδ(ω − ωα)


tanh−1

(β(~ω − µ)

2

)
tanh

(β(~ω − µ)

2

)
)
,

(11.11)
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where again the result in the top of the bracket applies in the case of bosons
and the result in the bottom in the case of fermions.
(1 point)

12 Matsubara sums

Consider the function f(ω) =
∑∞

n=−∞
1

(2nπ)2 + ω2
,defined for any ω 6= 0. This function

is positive definite. The goal of this exercise is to compute this quantity and similar ones
which later will prove useful when one performs summations over Matsubara frequencies.

(a) Show that one can express f(ω) =
∮
C

dz

2πi

1

ez − 1

1

ω2 − z2
, where the contour is the

union of the circles that surround each pole of
1

ez − 1
, see figure 1.

(2 points)

(b) Show that by deforming C over two infinite semi-circles to the right and left of the
imaginary axis (see figure 1) and by using the residue theorem, one has f(ω) =
1

2ω
tanh−1

(ω
2

)
.

(2 points)

(c) Consider g(ω) =
∑∞

n=−∞
1

(nπ)2 + ω2
. By appropriately expressing it in terms of

f(ω), show that one has g(ω) =
1

ω
tanh−1

(
ω
)
.

(1 point)

(d) Finally, consider h(ω) =
∑∞

n=−∞
1

((2n+ 1)π)2 + ω2
. One could also express this

sum as a contour integral, but there is a simpler way to compute it. First, show that

h(ω) = g(ω)− f(ω). Then, show from the results above that h(ω) =
1

2ω
tanh

(ω
2

)
.

(3 points)
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z= + ωz= −ω

C1

C2

C3

Cn

2 π iT = z∆

C

Figure 12.1: Contour used to express summation as a contour integral.
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