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4. Exercise Sheet

13 The Baker-Campell-Hausdorff series

One defines the exponential of an operator Ô through the series eÔ :=
∑∞

n=0

1

n!
Ôn, (for

operators Ô that fulfill certain conditions)

(a) Show that

eÂB̂e−Â =

∞∑
n=0

1

n!
D̂n, (13.1)

where D̂0 = B̂ and D̂n+1 = [Â, D̂n]− for n ≥ 0.
(3 points)
Hint: Consider the operator B̂λ = eλÂB̂e−λÂ as a function of λ. Write down the
equation for its derivative with respect to λ and substitute the generalization of
(13.1) on both sides of such an equation. A comparison of the Taylor series arising
on both sides of that equation is sufficient to obtain the desired result.

(b) Show that if Â commutes with [Â, B̂]−, one has eÂeB̂e−Â = eB̂+[Â,B̂]−

(2 points)

(c) Show that if the commutator [Â, B̂]− commutes with both Â and B̂, one has eÂB̂ =

eÂ+B̂+ 1
2
[Â,B̂]−

(3 points)

1



Hint: Show that the derivative of Ûλ = e−λB̂e−λÂeλ(Â+B̂)+ 1
2
λ2[Â,B̂]− is identically

zero if [Â, B̂]− commutes with both Â and B̂, the result then follows from considering
the expression at λ = 1. You will need the result proven in (a).

14 Coherent States of the harmonic oscillator

We consider the one-dimensional quantum harmonic oscillator, described by the Hamil-
tonian Ĥ0 = ~ω0â

†â and by the commutator [â, â†] = 1. This system is equivalent to a
single boson mode. We ignore the zero-energy contribution ~ω0/2 to the Hamiltonian,
as it is a mere additive constant. It can be shown that such an Hamiltonian possesses
normalized energy eigenstates Ĥ0|n〉 = En|n〉 with En = ~ω0n. It can also be shown
that â|n〉 =

√
n|n − 1〉 and â†|n〉 =

√
n+ 1|n + 1〉. In particular, the ground state of

such a system, also known as the vacuum, satisfies â|0〉 = 0.

(a) Show that the partition function of such a system, defined as Zβ = e−β~ω0/2Tr
(
e−βĤ0

)
(we re-introduced here the zero-point energy), is given by Zβ = 1/(2 sinh(βω0/2)).
(2 points)
Hint: Express the trace in terms of the eigenstates |n〉 of Ĥ0.

(b) Check explicitly that the entropy of such a system satisfies the third law of ther-

modynamics, S(T = 0) = 0, where S = −dF
dT

is the entropy of the system, with
F = −kBT lnZβ being the free energy.
(2 points)

(c) One defines a coherent state |z〉 = T̂ (z)|0〉, where z is a complex number and T̂ (z) =
ezâ
†−z∗â is the so-called displacement operator (see lecture).

(i) Show that |z〉 = e−
1
2
|z|2∑∞

n=0

zn√
n!
|n〉.

(2 points)
Hint: Show first that |z〉 = e−

1
2
|z|2ezâ

† |0〉, using the Baker-Campbell-Hausdorff
identity, proved in the previous exercise.

(ii) Show that â|z〉 = z|z〉, i.e. |z〉 is an eigenstate of the (non-hermitian) operator
â.
(2 points)
Hint: There are at least two ways to solve this exercise. You may either consider
the representation of |z〉 in terms of eigenstates of Ĥ0 and the action of â on
these eigenstates, or you may want to use the previous exercise to compute
the product T̂ †(z)âT̂ (z). Do note that T̂ †(z)T̂ (z) = 1, i.e., T̂ (z) is an unitary
operator.

(iii) Show that the coherent states |z〉 and |z′〉 are normalized and that 〈z′|z〉 =
e−

1
2
|z−z′|2eiIm(zz′?), where z′? is the complex conjugate of z′. Do note that

two coherent states characterized by different parameters z and z′ are not
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orthogonal.
(2 points)

(iv) Show that the time-evolution of |z〉 is given by e−iĤ0t/~|z〉 = |ze−iω0t〉.
(2 points)
Hint: There are again two ways to solve this exercise. The first is to consider
the action of e−iĤ0t/~ in the representation of |z〉 in terms of eigenstates of Ĥ0,
the second is to compute explicitly the product e−iĤ0t/~T̂ (z)eiĤ0t/~ using the
known time-evolution of the creation and annihilation operators, see exercise
6.

(d) Show that the set of coherent states is complete by showing that
∫ dzdz

2πi
|z〉〈z| = 1,

where the measure
dzdz

2πi
=
dxdy

π
, with x and y being the real and imaginary parts

of z, i.e., z = x+ i y. The integrals over x and y extend from −∞ to +∞.
Since two coherent-states characterized by different parameters z and z′ are not
orthogonal, this basis is said to be over-complete.
(3 points)
Hint: Use the representation of ẑ in terms of the eigenstates of Ĥ0 and the fact that
such a basis is complete, i.e.

∑∞
n=0 |n〉〈n| = 1. Note that you will need to perform

a transformation of the double integral over x and y to polar coordinates.

(e) Show that for any operator Ô (that fulfills certain conditions), one can write

Tr
(
Ô
)
=

∫
dzdz

2πi
〈z|Ô|z〉, (14.1)

(2 points)
Hint: Express the trace of Ô in any complete orthogonal basis, e.g. the basis of the
eigenstates of the Hamiltonian, and then use the (over-)completeness of the coherent
state basis proved above, as well as the completeness of the said orthonormal basis,
i.e. for the basis of eigenstates of the Hamiltonian such completeness is expressed
as
∑∞

n=0 |n〉〈n| = 1.

(f) Show that e−βĤ0 |z〉 = e−
1
2
|z|2(1−e−2βω0 )|ze−β~ω0〉

(3 points)
Hint: This exercise is solved in a manner that is completely analogous to (c)-iv,
however, you have to be careful with the fact that e−βĤ0 |z〉 is not (unlike e−iĤ0t/~|z〉)
a normalized state, as e−βĤ0 is not a unitary operator.

(g) Use the previous result and that of (c)-iii to show that 〈z|e−βĤ0 |z〉 = e−|z|
2(1−e−β~ω0 ).

Show from such a result that

Zβ = e−β~ω0/2

∫
dzdz

2πi
〈z|e−βĤ0 |z〉 = 1

2 sinh(β~ω0/2)
. (14.2)
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One thus recovers the result obtained in (a).
(4 points)
Hint: You will need to perform a coordinate transformation to polar coordinates in
the resulting integral.

15 Path Integral representation of the quantum
harmonic oscillator

The Green function of the 1d quantum harmonic oscillator is given by GR(x, T ;x0, 0) =

− i
~
e−iω0T/2〈x|e−iĤ0T/~|x0〉 where Ĥ0 = ~ω0â

†â and T > 0. It can be shown (see lecture
course) that such a propagator has the following representation in terms of a path integral

GR(x, T ;x0, 0) = −
i

~

∫
D[x(t)] eiS[x(t)]/~, (15.1)

where the path integral is a sum over all pievewise continuous trajectories that start at
t = 0 in point x0 and end at t = T in point x (i.e., x(0) = x0 and x(T ) = x). The

action S[x(t)] =
1

2
m
∫ T
0 dt [ẋ

2(t) − ω2
0x

2(t)] is computed over each of such trajectories
(the action is said to be a functional of the trajectory) and each trajectory contributes
with a different phase to the overall sum over histories. The objective of this exercise is
to explicitly compute the propagator of the quantum harmonic oscillator.
Do note that we are going to perform heuristic calculations. If you want to see a path
integral treated rigorously, see e.g. the book of Glimm and Jaffe, Quantum Physics: A
Functional Integral Point of View.

(a) Show that Zβ = e−β~ω0/2Tr
(
e−βĤ0

)
= i~

∫∞
−∞dxG

R(x,−i~β;x, 0).
(2 points)
Hint:The basis of the position eigenstates |x〉 is complete.

(b) Writing x(t) = xc(t) + δx(t), where xc(t) is a solution of the classical equation of
motion ẍc(t) = −ω2

0xc(t), with xc(0) = x0 and xc(T ) = x, and δx(t) is the quantum
fluctuation around such a solution with δx(0) = δx(T ) = 0, show that one can write
S[x(t)] = S[xc(t)] + S[δx(t)].
(3 points)

Hint: Substitute x(t) = xc(t)+δx(t) in S[x(t)] =
1

2
m
∫ T
0 dt [ẋ

2(t)−ω2
0x

2(t)], integrate
one of the terms by parts and use the classical equation of motion for xc(t) and the
boundary conditions for δ(t) at t = 0 and t = T .

(c) Show that S[xc(t)] =
1

2
m
∫ T
0 dt [ẋ

2
c(t)− ω2

0x
2
c(t)] can be written as

S[xc(t)] =
1

2
m[xc(T )ẋc(T )− xc(0)ẋc(0)].

(1 point)
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Hint: Integrate one of the points in S[xc(t)] by parts and use the classical equations
of motion.

(d) Show that the solution of the classical equation of motion that satisfies the boundary
conditions xc(0) = x0 and xc(T ) = x, is given by

xc(t) = x0 cos(ω0t) +
x− x0 cos(ω0T )

sin(ω0T )
sin(ω0t). (15.2)

(2 points)

(e) Substitute (15.2) in the expression given in (c) to show that

S[xc(t)] =
mω0

2 sin(ω0T )

[
x2 cos(ω0T )− 2xx0 + x20 cos(ω0T )

]
(15.3)

(2 points)

(f) Show from the results obtained above and from equation (15.1) that

GR(x, T ;x0, 0) = −
i

~
A(T )eiS[xc(t)]/~, (15.4)

where A(T ) =
∫
D[δx(t)]eiS[x(t)]/~ is an amplitude that is independent of the bound-

ary conditions, as δx(t) does not depend on them (recall that δx(0) = δx(T ) = 0).
(2 points)

(g) Use (15.3) in (15.4), analytically continued to T = −i~β, and substitute this result
into (a) to obtain an expression for Zβ in terms of A(−i~β). Show from the known

result for Zβ , as given by (14.2), that A(−i~β) =
√

mω0

2π~ sinh(β~ω0)
.

(3 points)
Hint: You will need to perform a simple Gaussian integral.

(h) Finally, analytically continue this result by replacing ~β → iT , to obtain

GR(x, T ;x0, 0) = −
i

~

√
mω0

2π~ sinh(β~ω0)

× exp
[ imω0

2~ sin(ω0T )

[
x2 cos(ω0T )− 2xx0 + x20 cos(ω0T )

]]
. (15.5)

This is the desired result for the propagator of the one-dimensional quantum har-
monic oscillator. Note that the method employed here is only exact for linear sys-
tems.
(2 points)
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