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Quantum Many-Body Systems

5. Exercise Sheet

16 Path integral of the harmonic oscillator in an
external force field

In this exercise, we consider a problem of an harmonic oscillator in an external force-field
that is space-independent but depends in an arbitrary manner on time. The Hamiltonian
describing such a system is given, in the Schrödinger representation, by

Ĥ(t) = Ĥ − f(t)x̂, (16.1)

where Ĥ0 is given, as before, by

Ĥ0 =
p̂2

2m
+

1

2
mω2

0x̂
2 = ~ω0

(
â†â+

1

2

)
. (16.2)

We have here redefined Ĥ0 to include the zero-point energy contribution, so that we do
not have to carry it explicitly in the definition of the propagators. Since the total Hamil-
tonian is time-dependent, the time-evolution operator, which satisfies the Schrödinger
equation (??), has to be written as a time-ordered exponential, see equation (). For
a perturbative expansion, the time-evolution operator in the interaction representation
Ŝ(T, 0) is important, which is given in this case by (we assume that the motion takes
place in the interval tε[0, T ])

Ŝ(T, 0) = T exp
[ i
~

∫ T

0
dt f(t)x̂(t)

]
, (16.3)
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where x̂(t) = eiĤ0t/~x̂e−iĤ0t/~ is the position operator in the interaction representation
(which coincides with the Heisenberg representation of the harmonic oscillator in the
absence of an external field). We have that Û(T, 0) = e−iĤ0t/~Ŝ(T, 0), see problem sheet
2.
It was shown in the lecture that the Green function of the quantum harmonic oscillator in

the presence of an homogeneous time-dependent forceGRf (x, T ;x0, 0) = − i
~
〈x|Û(T, 0)|x0〉

can be expressed as the following path-integral

GRf (x, T ;x0, 0) = − i
~

∫
D[x(t)] eiSf [x(t)]/~, (16.4)

where the path integral is a sum over all piece-wise continuous trajectories that start at
t = 0 in point x0 and end at t = T in point x (i.e. x(0) = x0 and x(T ) = X). The

action Sf [x(t)] =
1

2
m
∫ T
0 dt [ẋ(t)−ω2

0x
2(t)] +

∫ T
0 dt f(t)x(t) is computed over each of such

trajectories (the action is said to be a functional of the trajectory) and each trajectory
contributes with a different phase to the overall sum over histories. The objective of this
exercise is to explicitly compute the propagator (16.4).

(a) Writing x(t) = xc(t) + δx(t), where xc(t) is a solution of the classical equation of

motion ẍc(t) = −ω2
0xc(t) +

f(t)

m
, with xc(0) = x0 and xc(T ) = x, and δx(t) is the

quantum fluctuation around such a solution, with δx(0) = δx(T ) = 0, show that
one can write S[x(t)] = Sf [xc(t)] + S0[δx(t)], where S0[δx(t)] is the action of the
quantum harmonic oscillator in the absence of an external force, see problem 15.
(3 points)

Hint: Use x(t) = xc(t)+δx(t) in Sf [x(t)] =
1

2
m
∫ T
0 dt [ẋ(t)−ω2

0x
2(t)]+

∫ T
0 dt f(t)x(t),

integrate one of the terms by parts and use the classical equation of motion for xc(t)
and the boundary conditions for δx(t) at t = 0 and t = T .

(b) Show that Sf [x(t)] =
1

2
m
∫ T
0 dt [ẋc(t) − ω2

0x
2
c(t)] +

∫ T
0 dt f(t)xc(t) can be written as

Sf [x(t)] =
1

2
m[xc(T )ẋc(T )− xc(0)ẋc(0)] +

1

2

∫ T
0 dt f(t)xc(t).

(2 points)
Hint: Integrate one of the terms in S[xc(t)] by parts and use the classical equation
of motion.

(c) Show that the solution of the classical equation of motion in the presence of an
external force can be written as xc(t) = xhc (t) + xpc(t), where xhc (t) is a solution
of the equation of motion in the absence of an external force, with the boundary
conditions xhc (0) = x0, xhc (T ) = x and xpc(t) is a solution of the equation of motion

in the presence of an external force ẍpc(t) = −ω2
0x

p
c(t)+

f(t)

m
, but with the particular

boundary conditions xpc(0) = xpc(T ) = 0. Furthermore, show that xhc (t) can be
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written as

xhc (t) =
1

sin(ω0T )

[
x0 sin(ω0(T − t)) + x sin(ω0t)

]
. (16.5)

Deduce that

ẋhc (t) =
ω0

sin(ω0T )

[
x0 cos(ω0t) + x cos(ω0(T − t))

]
, (16.6)

with

ẋhc (0) =
ω0[x− x0 cos(ω0T )]

sin(ω0T )

ẋhc (T ) =
ω0[x cos(ω0T )− x0]

sin(ω0T )
. (16.7)

(5 points)
Hint: The first part of the exercise is a particular case of a general result that applies
for linear differential equations, while the second part is a mere repetition of exercise
15(d).

(d) Argue that the solution xpc(t) can be written within the interval tε[0, T ] in terms of
the Fourier series

xpc(t) =
∞∑
n=1

xpn sin
(nπt
T

)
. (16.8)

(2 points)
Hint: Any function within the interval tε[0, 2T ] (which includes the interval [0,T]),
can be written as a Fourier series which involves a sum over both sines and cosines,
since the Fourier basis is complete. What is the form of this series if we wish to
enforce the boundary conditions xpc(0) = xpc(T ) = 0?

(e) By substituting (16.8) in the equation ẍc(t) = −ω2
0x

p
c(t) +

f(t)

m
, show that the

coefficients xpn are given by

xpn =
2T

m[(ω0T )2 − (nπ)2]

∫ T

0
du f(u) sin

(nπu
T

)
. (16.9)

We explicitly assume that ω0T 6= nπ, for nεZ.
(2 points)

Hint:
2

T

∫ T
0 du sin

(nπu
T

)
sin
( lπu
T

)
= δn,l, where l is, like n, a positive integer.

(f) By substituting (16.9) in (16.8), show that one can write xpc(t) as

xpc(t) =
T

2m

∫ T

0
du f(u)[H(t− u)−H(t+ u)], (16.10)
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where H(x) =
∑∞

n=−∞
1

(ω0T )2 − (nπ)2
cos
(nπ|x|

T

)
.

(3 points)
Hint: Express the product of sines in terms of a difference of cosines and recall that
the cosine is an even function.

(g) Show that H(x) =
∮
C
dz

2πi

1

sinh(z)

cosh[z(1− |x|/T )]

(ω0T )2 + z2
, where the contour is the union

of the circles that surround each pole of
1

sinh(z)
(thus the poles of

1

(ω0T )2 + z2
at

z = ±iω0T are excluded from such a contour).
(2 points)
Hint: cos(nπ(1− y)) = (−1)n cos(nπy).

(h) Show that the integral over a circle with a very large radiusR,
∮
�
dz

2πi

1

sinh(z)

cosh[z(1− |x|/T )]

(ω0T )2 + z2
=

0, for R chosen appropriately. Hence, show that H(x) =
cos[ω0(T − |x|))]
ω0T sin(ω0T )

.

(3 points)
Hint: Have a look at the solution of exercise 12.

(i) Verify explicitly that the expression obtained for xpc(t),

xpc(t) =
1

2mω0 sin(ω0T )

∫ T

0
du f(u){cos[ω0(T − |t− u|)]− cos[ω0(T − |t+ u|)]},

(16.11)

fulfills the boundary conditions xpc(0) = xpc(T ) = 0.
(1 point)

(j) Show that the derivative of xpc(t) is given by

ẋpc(t) =
1

2m sin(ω0T )

∫ T

0
du f(u){sin[ω0(T − |t− u|)]sgn(t− u)− sin[ω0(T − t− u)]},

(16.12)

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0.
(2 points)

Hint: Note that |t+ u| = t+ u if t and u are in [0, T ],
d|x|
dx

= sgn(x), and apply the
chain rule of differentiation.

(k) Show in particular that

ẋpc(0) = − 1

m sin(ω0T )

∫ T

0
du f(u) sin[ω0(T − u)],

ẋpc(T ) =
1

m sin(ω0T )

∫ T

0
du f(u) sin(ω0u). (16.13)

(2 points)
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(l) By differentiation (16.12), show that xpc(t) satisfies the classical equation of motion
in the presence of an external force. Thus, xc(t) = xhc (t) + xpc(t), with xhc (t) as
given by (16.5) and xpc(t) as given by (16.11), is the full solution with the boundary
conditions xc(0) = x0, xc(T ) = x.
(2 points)

Hint: sgn2(x) = 1 and
dsgn(x)

dx
= 2δ(x).

(m) Substitute xc(t) in the expression for S[xc(t)] as given in (b), to obtain the complete
expression for the classical action of an oscillator in the presence of an external force,
namely

Sf [xc(t)] =
mω0

2 sin(ω0T )
[x2 cos(ω0T )− 2xx0 + x20 cos(ω0T )] + Φ0

+
1

sin(ω0T )

∫ T

0
dt f(t){x sin(ω0t) + x0 sin[ω0(T − t)]}, (16.14)

where Φ0 is given by

Φ0 =
1

4mω0 sin(ω0T )

∫ T

0
dt

∫ T

0
du f(t)f(u){cos[ω0(T − |t− u|)]

− cos[ω0(T − |t+ u|)]}. (16.15)

(5 points)
Hint: Use the expressions (16.7) and (16.13) to obtain ẋc(0) and ẋc(T ).

(n) Show from the results obtained above that

GRf (x, T ;x0, 0) = − i
~
A(T )eiSf [xc(t)]/~, (16.16)

where Sf [xc(t)] is given by (16.14) and

A(T ) =

∫
D[δx(t)]eiSf [δx(t)]/~ =

√
mω0

2πi~ sin(ω0T )
. (16.17)

(2 points)
Hint: The exercise is a mere repetition of 15(f).

17 Matrix elements of the time-evolution operator of
the harmonic oscillator in a field in the interaction

representation

The purpose of this exercise is two establish two identities that will be useful later on.
Consider the matrix elements S(x, T ;x0, 0) = 〈x|Ŝ(T, 0)|x0〉, where Ŝ(T, 0) is given by
(16.3).
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(a) Show that one can write S(x, T ;x0, 0) as

S(x, T ;x0, 0) = ~2
∫ ∞
−∞

dy G
R
0 (y, T ;x, 0)GRf (y, T ;x0, 0), (17.1)

whereGR0 (y, T ;x, 0) is the complex conjugate of the propagator of the one-dimensional
harmonic oscillator, given by expression (15.5) from the previous exercise sheet and
GRf (y, T ;x0, 0) is given by (16.16).
(3 points)
Hint: Use Ŝ(T, 0) = eiĤ0T Û(T, 0) is the matrix element 〈x|Ŝ(T, 0)|x0〉 and use the
representation of the identity in terms of position eigenstates.

(b) Consider the generating functional for the correlation functions of the position op-
erator

Z[f(t)] =
1

Zβ
Tr
(
e−βĤ0Ŝ(T, 0)

)
, (17.2)

where Ĥ0 is given by (16.2). This quantity is a functional of the external field f(t).
By functionally differentiating it with respect to f(t) at zero applied field, we can
obtain all the causal Green functions involving the position operator in thermal
equilibrium. Show that one can express Z[f(t)] as

Z[f(t)] =
i~
Zβ

∫ ∞
−∞

∫ ∞
−∞

dx0dxG
R
0 (x0,−i~β;x, 0)S(x, T ;x0, 0). (17.3)

(3 points)
Hint: Use the representation of the trace in terms of position eigenstates and use
again the representation of the identity in terms of these eigenstates.

These results and those exercise 16 will be used in the next problem sheet to explicitly
compute Z[f(t)].
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