Quantum Many-Body Systems

7. Exercise Sheet

20 GENERATING FUNCTIONAL FOR TIME-ORDERED
 CORRELATION FUNCTIONS OF THE FERMIONIC OSCILLATOR OPERATOR APPROACH

In this exercise, we will compute the generating functional of a fermionic harmonic oscillator (equivalent to a fermionic single mode system). The Hamiltonian operator that defines such a system is given by

$$
\begin{equation*}
\hat{H}_{0}=\hbar \omega_{0}\left(\hat{c}^{\dagger} \hat{c}-\frac{1}{2}\right), \tag{20.1}
\end{equation*}
$$

where the annihilation and creation operators obey the anti-commutation relations $[\hat{c}, \hat{c}]_{+}=$ $\left[\hat{c}^{\dagger}, \hat{c}^{\dagger}\right]_{+}=0,\left[\hat{c}, \hat{c}^{\dagger}\right]_{+}=1$. Note that the first two relations also imply that $\hat{c}^{2}=\left(\hat{c}^{\dagger}\right)^{2}=0$. From such identities and the remaining anti-commutation relation, it is trivial to show that the particle number operator $\hat{n}=\hat{c}^{\dagger} \hat{c}$ satisfies the equation $\hat{n}^{2}=\hat{n}$ and thus that such operator has two possible eigenvalues, namely 0 or 1 (the Hilbert space that describes the problem is thus two-dimensional), with the corresponding eigenstates being designated by $|0\rangle$ and $|1\rangle$. The Hamiltonian \hat{H}_{0} is diagonal in such states, with eigenvalues $\hat{H}_{0}|0\rangle=-\frac{\hbar \omega_{0}}{2}|0\rangle, \hat{H}_{0}|1\rangle=\frac{\hbar \omega_{0}}{2}|1\rangle$.
(a) Show that $\hat{n}^{2}=\hat{n}$
(2 points)
(b) Show that $|1\rangle=\hat{c}^{\dagger}|0\rangle$ and that $|0\rangle=\hat{c}|1\rangle$.
(2 points)
Hint: what is $\hat{c} \hat{c}^{\dagger}$?
(c) Show that the partition function $Z_{\beta}=\operatorname{Tr}\left(e^{-\beta \hat{H}_{0}}\right)$ is given by $Z_{\beta}=2 \cosh \left(\beta \hbar \omega_{0} / 2\right)$. (2 points)
Hint: Compute the trace in the eigenbasis of the Hamiltonian.
(d) From the expression for the free energy of such a system $F(T)=-k_{B} T \ln Z_{\beta}$, compute the entropy $S(T)=\frac{d F}{d T}$ and show that the expression obtained satisfies the third law of thermodynamics.
(2 points)
(e) The annihilation and creation operators are given in the Heisenberg representation by

$$
\begin{align*}
\hat{c}(t) & =e^{i \hat{H}_{0} t / \hbar} \hat{c} e^{-i \hat{H}_{0} t / \hbar}, \tag{20.2}\\
\hat{c}^{\dagger}(t) & =e^{i \hat{H}_{0} t / \hbar} \hat{c}^{\dagger} e^{-i \hat{H}_{0} t / \hbar} . \tag{20.3}
\end{align*}
$$

Show that these operators are related to \hat{c} and \hat{c}^{\dagger} by

$$
\begin{align*}
\hat{c}(t) & =\hat{c} e^{-i \omega_{0} t}, \tag{20.4}\\
\hat{c}^{\dagger}(t) & =\hat{c}^{\dagger} e^{i \omega_{0} t} . \tag{20.5}
\end{align*}
$$

(4 points)
Hint: Have a look at the solution of exercise 6(a) and adapt it accordingly.
(f) Consider the more general case in which the Hamiltonian is given, in the Schrödinger picture, by $\hat{H}(t)=\hat{H}_{0}+\hat{H}_{I}(t)$, with $\hat{H}_{I}(t)=-\left[\bar{\eta}(t) \hat{c}+\hat{c}^{\dagger} \eta(t)\right]$, where $\eta(t)$ and $\bar{\eta}(t)$ are Grassmann fields that anti-commute with each other and with the annihilation and creation operators \hat{c} and \hat{c}^{\dagger}. In other words, for arbitrary times t and $u,[\eta(t), \eta(u)]_{+}=0,[\bar{\eta}(t), \bar{\eta}(u)]_{+}=0,[\eta(t), \bar{\eta}(u)]_{+}=0$, and $[\eta(t), \hat{c}]_{+}=0$, $\left[\eta(t), \hat{c}^{\dagger}\right]_{+}=0,\left[\bar{\eta}(t), \hat{c}_{+}=0,\left[\bar{\eta}(t), \hat{c}^{\dagger}\right]_{+}=0\right.$. Moreover, these Grassmann variables commute with any c-number.
The generating functional of the correlation functions of the annihilation and creation operators is defined as

$$
\begin{equation*}
\mathcal{Z}[\eta(t), \bar{\eta}(t)]=\frac{1}{Z_{\beta}} \operatorname{Tr}\left(e^{-\beta \hat{H}_{0}} T e^{-\frac{i}{\hbar} \int_{0}^{T} d t \hat{H}_{I}^{\text {int }}(t)}\right), \tag{20.6}
\end{equation*}
$$

where $\hat{H}_{I}^{\text {int }}(t)=e^{i \hat{H}_{0} t / \hbar} \hat{H}_{I}(t) e^{-i \hat{H}_{0} t / \hbar}$ is the interaction Hamiltonian in the interaction representation. Show that it can be written as

$$
\begin{equation*}
\mathcal{Z}[\eta(t), \bar{\eta}(t)]=\frac{1}{Z_{\beta}} \operatorname{Tr}\left(e^{-\beta \hat{H}_{0}} e^{-\frac{i}{\hbar} \int_{0}^{T} d t \hat{H}_{I}^{\operatorname{int}}(t)}\right) e^{-\frac{1}{2 \hbar^{2}} \int_{)}^{T} d t \int_{)}^{t} d u\left[\hat{H}_{I}^{\text {int }}(t), \hat{H}_{I}^{\text {int }}(u)\right]-} . \tag{20.7}
\end{equation*}
$$

(2 points)

Hint: Check that $\left[\hat{H}_{I}^{\text {int }}(t), \hat{H}_{I}^{\text {int }}(u)\right]$ - commutes with $\hat{H}_{I}^{\text {int }}\left(t^{\prime}\right)$ for arbitrary t, u, and t^{\prime} and then apply (??).
(g) Using the time-evolution of the annihilation and creation operators in the interaction representation, show that one can write $\mathcal{Z}[\eta(t), \bar{\eta}(t)]$ as

$$
\begin{equation*}
\mathcal{Z}[\eta(t), \bar{\eta}(t)]=\frac{1}{Z_{\beta}} \operatorname{Tr}\left(e^{-\beta \hat{H}_{0}} e^{\hat{c}^{\dagger} \gamma-\bar{\gamma} \hat{c}}\right) e^{-\frac{1}{2 \hbar^{2}} \int_{)}^{T} d t \int_{)}^{t} d u\left[\hat{H}_{I}^{\text {int }}(t), \hat{H}_{I}^{\text {int }}(u)\right]-} \tag{20.8}
\end{equation*}
$$

where $\gamma=\frac{i}{\hbar} \int_{0}^{T} d t e^{i \omega_{0} t} \eta(t)$ and $\bar{\gamma}=-\frac{i}{\hbar} \int_{0}^{T} d t e^{-i \omega_{0} t} \bar{\eta}(t)$ are Grassmann variables.

(2 points)

(h) Show that

$$
\begin{equation*}
\frac{1}{Z_{\beta}} \operatorname{Tr}\left(e^{-\beta \hat{H}_{0}} e^{\hat{c}^{\dagger} \gamma-\bar{\gamma} \hat{c}}\right)=\left(1+e^{-\beta \hbar \omega_{0}}\right)^{-1} \sum_{n=0}^{1} e^{-\beta \hbar \omega_{0} n}\langle n| e^{\hat{c}^{\dagger} \gamma-\bar{\gamma} \hat{c}}|n\rangle . \tag{20.9}
\end{equation*}
$$

(2 points)

(i) Show that

$$
\begin{align*}
\langle 0| e^{\hat{c}^{\dagger} \gamma-\bar{\gamma} \hat{c}}|0\rangle & =1-\frac{1}{2} \bar{\gamma} \gamma \tag{20.10}\\
\langle 1| e^{\hat{c}^{\dagger} \gamma-\bar{\gamma} \hat{c}}|1\rangle & =1+\frac{1}{2} \bar{\gamma} \gamma \tag{20.11}
\end{align*}
$$

(3 points)

Hint: Taking into account that γ and $\bar{\gamma}$ are Grassmann variables and that \hat{c} and \hat{c}^{\dagger} are fermion operators, expand the exponentials on the left-hand side of equation (20.10) and (20.11) as a power series in these variables.
(j) Substitute (20.9) in (20.8) and, taking into account (20.10) and (20.11), with γ and $\bar{\gamma}$ given by their definition above, show that

$$
\begin{equation*}
\mathcal{Z}[\eta(t), \bar{\eta}(t)]=e^{-\frac{1}{\hbar^{2}} \int_{0}^{T} d t \int_{0}^{T} d u \bar{\eta}(t) \eta(u) \tilde{G}(t-u)} \tag{20.12}
\end{equation*}
$$

where $\tilde{G}(t-u)=\frac{1}{2} e^{-i \omega_{0}(t-u)}\left[\tanh \left(\beta \hbar \omega_{0} / 2\right)+\Theta(t-u)-\Theta(u-t)\right]$.
(3 points)
Hint: $e^{\frac{1}{2} \tanh \left(\beta \omega_{0} / 2\right) \bar{\gamma} \gamma}=1-\frac{1}{2} \tanh \left(\beta \omega_{0} / 2\right) \bar{\gamma} \gamma$.
(k) Finally, by performing the functional derivatives with respect to $\eta(t)$ and $\bar{\eta}(t)$, show that $\left\langle T\left\{\hat{c}\left(t_{1}\right) \hat{c}^{\dagger}\left(t_{2}\right)\right\}\right\rangle=\tilde{G}\left(t_{1}-t_{2}\right)$.

(2 points)

21 Bogoliubov transformation For a Fermion TWO-MODE Problem - GEnERATIng Functional

Consider a Hamiltonian \hat{H}_{0} that describes a fermion two-mode problem in which hopping between the two modes can occur

$$
\begin{equation*}
\hat{H}_{0}=\hbar \omega_{L} \hat{c}_{L}^{\dagger} \hat{c}_{L}+\hbar \omega_{R} \hat{c}_{R}^{\dagger} \hat{c}_{R}-t\left(\hat{c}_{L}^{\dagger} \hat{c}_{R}+\hat{c}_{R}^{\dagger} \hat{c}_{L}\right) \tag{21.1}
\end{equation*}
$$

where t is a real quantity. Assume for definiteness that $\omega_{L}>\omega_{R}$ (if the opposite is true, simply interchange L and R). The annihilation and creation operators satisfy the canonical anti-commutation relations $\left[\hat{c}_{\mu}, \hat{c}_{\nu}\right]_{+}=0,\left[\hat{c}_{\mu}^{\dagger}, \hat{c}_{\nu}^{\dagger}\right]_{+}=0$, and $\left[\hat{c}_{\mu}, \hat{c}_{\nu}^{\dagger}\right]_{+}=\delta_{\mu, \nu}$, where $\mu, \nu=L, R$.
(a) Define the operators \hat{c}_{+},
(b) Define the operators $\hat{c}_{+}, \hat{c}_{+}^{\dagger}, \hat{c}_{-}, \hat{c}_{-}^{\dagger}$ through the following relations

$$
\begin{align*}
& \hat{c}_{L}=\cos \theta \hat{c}_{+}+\sin \theta \hat{c}_{-} \tag{21.2}\\
& \hat{c}_{L}=-\sin \theta \hat{c}_{+}+\cos \theta \hat{c}_{-}, \tag{21.3}
\end{align*}
$$

where θ is a real number. The hermitian conjugate of these equations give us the relation between the operators $\hat{c}_{L}^{\dagger}, \hat{c}_{R}^{\dagger}$ and $\hat{c}_{+}^{\dagger}, \hat{c}_{-}^{\dagger}$.
Show that the new operators $\hat{c}_{+}, \hat{c}_{+}^{\dagger}, \hat{c}_{-}, \hat{c}_{-}^{\dagger}$ also obey canonical anti-commutation relations among themselves.
(2 points)
Hint: Express the new operators in terms of the old ones and use the known anticommutation relations.
(c) Show that it one chooses θ such that $\tan (2 \theta)=\frac{2 t}{\hbar\left(\omega_{L}-\omega_{R}\right)}$, one can write \hat{H}_{0} in terms of the operators $\hat{c}_{+}, \hat{c}_{+}^{\dagger}, \hat{c}_{-}, \hat{c}_{-}^{\dagger}$ as

$$
\begin{equation*}
\hat{H}_{0}=\hbar \omega_{+} \hat{c}_{+}^{\dagger} \hat{c}_{+}+\hbar \omega_{-} \hat{c}_{-}^{\dagger} \hat{c}_{-} \tag{21.4}
\end{equation*}
$$

i.e., \hat{H}_{0} is diagonal in the new set of operators. The eigenfrequencies $\omega_{ \pm}$are given by $\omega_{ \pm}=\frac{1}{2}\left[\left(\omega_{L}+\omega_{R}\right) \pm \sqrt{\left(\omega_{L}-\omega_{R}\right)^{2}+4 t^{2}}\right]$. Note that apart from an overall constant, \hat{H}_{0} can be written as the sum of two independent fermionic harmonic oscillators.

(4 points)

Hint: Substitute (21.2),(??) and their complex conjugates in (21.1) and ask yourself what is the condition that θ must obey in order that the cross terms involving $\hat{c}_{+}^{\dagger} \hat{c}_{-}$ and $\hat{c}_{-}^{\dagger} \hat{c}_{+}$ar exactly zero.
(d) Show that the partition function $Z_{\beta}=\operatorname{Tr}\left(e^{-\beta \hat{H}_{0}}\right)$ is given by

$$
\begin{equation*}
Z_{\beta}=Z_{\beta}^{+} Z_{\beta}^{-}=4 \cosh \left(\beta \omega_{+} / 2\right) \cosh \left(\beta \omega_{-} / 2\right) e^{-\beta \hbar\left(\omega_{+}+\omega_{-}\right) / 2} \tag{21.5}
\end{equation*}
$$

in which $Z_{\beta}^{ \pm}$are the individual partition functions of the independent modes + and - .

(2 points)

Hint: Write the trace in terms of the eigenstates that diagonalise the Hamiltonian i.e. the eigenstates of the operator $\hat{n}_{+}=\hat{c}_{+}^{\dagger} \hat{c}_{+}$and $\hat{n}_{-}=\hat{c}_{-}^{\dagger} \hat{c}_{-}$.
(e) Consider the more general case in which the Hamiltonian is given, in the Schrödinger picture, by $\hat{H}(t)=\hat{H}_{0}+\hat{H}_{I}(t)$, with $\hat{H}_{I}(t)=-\sum_{\mu}\left[\bar{\eta}(t) \hat{c}_{\mu}+\hat{c}_{\mu}^{\dagger} \eta_{\mu}(t)\right]$, where $\eta_{\mu}(t)$ and $\bar{\eta}_{\mu}(t)$ are Grassmann fields that anti-commute with each other and with the annihilation and creation operators \hat{c}_{μ} and \hat{c}_{μ}^{\dagger}. In other words, for arbitrary times t and $u,[\eta(t), \eta(u)]_{+}=0,[\bar{\eta}(t), \bar{\eta}(u)]_{+}=0,[\eta(t), \bar{\eta}(u)]_{+}=0$, and $[\eta(t), \hat{c}]_{+}=0$, $\left[\eta(t), \hat{c}^{\dagger}\right]_{+}=0,[\bar{\eta}(t), \hat{c}]_{+}=0,\left[\bar{\eta}(t), \hat{c}^{\dagger}\right]_{+}=0$. Moreover, these Grassmann variables commute with any c-number.
The generating functional of the correlation functions of the annihilation and creation operators is defined as

$$
\begin{equation*}
\mathcal{Z}\left[\eta_{L}(t), \eta_{R}(t), \bar{\eta}_{L}(t), \bar{\eta}_{R}(t)\right]=\frac{1}{Z_{\beta}} \operatorname{Tr}\left(e^{-\beta \hat{H}_{0}} T e^{-\frac{i}{\hbar} \int_{0}^{T} d t \hat{H}_{I}^{\text {int }}(t)}\right), \tag{21.6}
\end{equation*}
$$

where $\hat{H}_{I}^{\text {int }}(t)=e^{i \hat{H}_{0} t / \hbar} \hat{H}_{I}(t) e^{-i \hat{H}_{0} t / \hbar}$ is the interaction Hamiltonian in the interaction representation. Show that it can be written as $(\mu=L, R)$

$$
\begin{equation*}
\mathcal{Z}\left[\eta_{L}(t), \eta_{R}(t), \bar{\eta}_{L}(t), \bar{\eta}_{R}(t)\right]=\mathcal{Z}\left[\eta_{+}(t), \bar{\eta}_{+}(t)\right] \mathcal{Z}\left[\eta_{-}(t), \bar{\eta}_{-}(t)\right], \tag{21.7}
\end{equation*}
$$

where the Grassmann source fields $\eta_{ \pm}(t)$ are given in terms of the original fields by

$$
\begin{align*}
& \eta_{+}(t)=\cos \theta \eta_{L}(t)-\sin \theta \eta_{R}(t), \tag{21.8}\\
& \eta_{-}(t)=\sin \theta \eta_{L}(t)+\cos \theta \eta_{R}(t), \tag{21.9}
\end{align*}
$$

with analogous equations for the conjugated fields $\bar{\eta}_{ \pm}(t)$. The generating functionals $\mathcal{Z}_{ \pm}\left[\eta_{ \pm}(t), \bar{\eta}_{ \pm}(t)\right]$ are given by

$$
\begin{equation*}
\mathcal{Z}_{ \pm}\left[\eta_{ \pm}(t), \bar{\eta}_{ \pm}(t)\right]=e^{-\frac{1}{\hbar^{2}} \int_{0}^{T} d t \int_{0}^{T} d u \bar{\eta}_{ \pm}(t) \eta_{ \pm}(u) \tilde{G}_{ \pm}(t-u)} \tag{21.10}
\end{equation*}
$$

where $\tilde{G}_{ \pm}(t-u)=\frac{1}{2} e^{-i \omega_{ \pm}(t-u)}\left[\tanh \left(\beta \hbar \omega_{ \pm} / 2\right)+\Theta(t-u)-\Theta(u-t)\right]$.

(5 points)

Hint: Express the operator $\hat{H}_{I}(t)$ in terms of the annihilation and creation operators $\hat{c}_{+}, \hat{c}_{+}^{\dagger}, \hat{c}_{-}, \hat{c}_{-}^{\dagger}$. Show that $\hat{H}_{0}=\hat{H}_{0+}+\hat{H}_{0-}$ with $\left[\hat{H}_{0+}, \hat{H}_{0-}\right]_{-}=0$ and because of that, one can write $\hat{H}_{0}=\hat{H}_{I+}^{\text {int }}(t)+\hat{H}_{I-}^{\text {int }}(t)$ such that $\left.\hat{H}_{I+}^{\text {int }}(t) \hat{H}_{I-}^{\text {int }}(u)\right]_{-}=0$ for arbitrary t, u. Once this is done, all you need is to apply the single mode result obtained in $\mathbf{2 0 (j)}$.
(f) By writing the functional (21.7) in terms of the original sources $\eta_{L}(t), \bar{\eta}_{L}(t), \eta_{R}(t)$, $\bar{\eta}_{R}(t)$, show that one has

$$
\begin{align*}
\left\langle T\left\{\hat{c}_{L}\left(t_{1}\right) \hat{c}_{L}^{\dagger}\left(t_{2}\right)\right\}\right\rangle & =\cos ^{2} \theta \tilde{G}_{+}\left(t_{1}-t_{2}\right)+\sin ^{2} \theta \tilde{G}_{-}\left(t_{1}-t_{2}\right), \tag{21.11}\\
\left\langle T\left\{\hat{c}_{R}\left(t_{1}\right) \hat{c}_{R}^{\dagger}\left(t_{2}\right)\right\}\right\rangle & =\sin ^{2} \theta \tilde{G}_{+}\left(t_{1}-t_{2}\right)+\cos ^{2} \theta \tilde{G}_{-}\left(t_{1}-t_{2}\right), \tag{21.12}\\
\left\langle T\left\{\hat{c}_{L}\left(t_{1}\right) \hat{c}_{R}^{\dagger}\left(t_{2}\right)\right\}\right\rangle & =-\frac{1}{2} \sin (2 \theta)\left[\tilde{G}_{+}\left(t_{1}-t_{2}\right)+\tilde{G}_{-}\left(t_{1}-t_{2}\right)\right], \tag{21.13}\\
\left\langle T\left\{\hat{c}_{R}\left(t_{1}\right) \hat{c}_{L}^{\dagger}\left(t_{2}\right)\right\}\right\rangle & =-\frac{1}{2} \sin (2 \theta)\left[\tilde{G}_{+}\left(t_{1}-t_{2}\right)+\tilde{G}_{-}\left(t_{1}-t_{2}\right)\right] . \tag{21.14}
\end{align*}
$$

(4 points)

