ZHEJIANG UNIVERSITY CENTER FOR CORRELATED MATTER STEFAN KIRCHNER kirchner@correlated-matter.com

Quantum Many-Body Systems

7. Exercise Sheet

20 GENERATING FUNCTIONAL FOR TIME-ORDERED CORRELATION FUNCTIONS OF THE FERMIONIC OSCILLATOR – OPERATOR APPROACH

In this exercise, we will compute the generating functional of a fermionic harmonic oscillator (equivalent to a fermionic single mode system). The Hamiltonian operator that defines such a system is given by

$$\hat{H}_0 = \hbar \omega_0 \left(\hat{c}^{\dagger} \hat{c} - \frac{1}{2} \right), \tag{20.1}$$

where the annihilation and creation operators obey the anti-commutation relations $[\hat{c}, \hat{c}]_+ = [\hat{c}^{\dagger}, \hat{c}^{\dagger}]_+ = 0$, $[\hat{c}, \hat{c}^{\dagger}]_+ = 1$. Note that the first two relations also imply that $\hat{c}^2 = (\hat{c}^{\dagger})^2 = 0$. From such identities and the remaining anti-commutation relation, it is trivial to show that the particle number operator $\hat{n} = \hat{c}^{\dagger}\hat{c}$ satisfies the equation $\hat{n}^2 = \hat{n}$ and thus that such operator has two possible eigenvalues, namely 0 or 1 (the Hilbert space that describes the problem is thus two-dimensional), with the corresponding eigenstates being designated by $|0\rangle$ and $|1\rangle$. The Hamiltonian \hat{H}_0 is diagonal in such states, with eigenvalues $\hat{H}_0|0\rangle = -\frac{\hbar\omega_0}{2}|0\rangle$, $\hat{H}_0|1\rangle = \frac{\hbar\omega_0}{2}|1\rangle$.

(a) Show that $\hat{n}^2 = \hat{n}$ (2 points)

- (b) Show that $|1\rangle = \hat{c}^{\dagger}|0\rangle$ and that $|0\rangle = \hat{c}|1\rangle$. (2 points) Hint: what is $\hat{c}\hat{c}^{\dagger}$?
- (c) Show that the partition function Z_β = Tr(e^{-βĤ₀}) is given by Z_β = 2 cosh(βħω₀/2).
 (2 points) Hint: Compute the trace in the eigenbasis of the Hamiltonian.
- (d) From the expression for the free energy of such a system $F(T) = -k_B T \ln Z_\beta$, compute the entropy $S(T) = \frac{dF}{dT}$ and show that the expression obtained satisfies the third law of thermodynamics. (2 points)
- (e) The annihilation and creation operators are given in the Heisenberg representation by

$$\hat{c}(t) = e^{i\hat{H}_0 t/\hbar} \hat{c} e^{-i\hat{H}_0 t/\hbar},$$
(20.2)

$$\hat{c}^{\dagger}(t) = e^{i\hat{H}_0 t/\hbar} \hat{c}^{\dagger} e^{-i\hat{H}_0 t/\hbar}.$$
(20.3)

Show that these operators are related to \hat{c} and \hat{c}^{\dagger} by

$$\hat{c}(t) = \hat{c}e^{-i\omega_0 t},\tag{20.4}$$

$$\hat{c}^{\dagger}(t) = \hat{c}^{\dagger} e^{i\omega_0 t}.$$
(20.5)

(4 points)

Hint: Have a look at the solution of exercise 6(a) and adapt it accordingly.

(f) Consider the more general case in which the Hamiltonian is given, in the Schrödinger picture, by $\hat{H}(t) = \hat{H}_0 + \hat{H}_I(t)$, with $\hat{H}_I(t) = -[\bar{\eta}(t)\hat{c} + \hat{c}^{\dagger}\eta(t)]$, where $\eta(t)$ and $\bar{\eta}(t)$ are Grassmann fields that *anti-commute* with each other and with the annihilation and creation operators \hat{c} and \hat{c}^{\dagger} . In other words, for arbitrary times t and u, $[\eta(t), \eta(u)]_+ = 0$, $[\bar{\eta}(t), \bar{\eta}(u)]_+ = 0$, $[\eta(t), \bar{\eta}(u)]_+ = 0$, and $[\eta(t), \hat{c}]_+ = 0$, $[\eta(t), \hat{c}^{\dagger}]_+ = 0$, $[\bar{\eta}(t), \hat{c}^{\dagger}]_+ = 0$. Moreover, these Grassmann variables commute with any *c-number*.

The generating functional of the correlation functions of the annihilation and creation operators is defined as

$$\mathcal{Z}[\eta(t),\bar{\eta}(t)] = \frac{1}{Z_{\beta}} \operatorname{Tr}\left(e^{-\beta\hat{H}_{0}}T e^{-\frac{i}{\hbar}\int_{0}^{T} dt \,\hat{H}_{I}^{\operatorname{int}}(t)}\right),\tag{20.6}$$

where $\hat{H}_{I}^{\text{int}}(t) = e^{i\hat{H}_{0}t/\hbar}\hat{H}_{I}(t)e^{-i\hat{H}_{0}t/\hbar}$ is the interaction Hamiltonian in the interaction representation. Show that it can be written as

$$\mathcal{Z}[\eta(t),\bar{\eta}(t)] = \frac{1}{Z_{\beta}} \operatorname{Tr}\left(e^{-\beta\hat{H}_{0}} e^{-\frac{i}{\hbar}\int_{0}^{T} dt \,\hat{H}_{I}^{\operatorname{int}}(t)}\right) e^{-\frac{1}{2\hbar^{2}}\int_{0}^{T} dt \,\int_{0}^{t} du \,[\hat{H}_{I}^{\operatorname{int}}(t),\hat{H}_{I}^{\operatorname{int}}(u)]_{-}}.$$
 (20.7)

(2 points)

Hint: Check that $[\hat{H}_{I}^{\text{int}}(t), \hat{H}_{I}^{\text{int}}(u)]_{-}$ commutes with $\hat{H}_{I}^{\text{int}}(t')$ for arbitrary t, u, and t' and then apply (??).

(g) Using the time-evolution of the annihilation and creation operators in the interaction representation, show that one can write $\mathcal{Z}[\eta(t), \bar{\eta}(t)]$ as

$$\mathcal{Z}[\eta(t),\bar{\eta}(t)] = \frac{1}{Z_{\beta}} \operatorname{Tr}\left(e^{-\beta\hat{H}_{0}} e^{\hat{c}^{\dagger}\gamma - \bar{\gamma}\hat{c}}\right) e^{-\frac{1}{2\hbar^{2}}\int_{0}^{T} dt \int_{0}^{t} du \, [\hat{H}_{I}^{\mathrm{int}}(t), \hat{H}_{I}^{\mathrm{int}}(u)]_{-}}, \qquad (20.8)$$

where $\gamma = \frac{i}{\hbar} \int_0^T dt \, e^{i\omega_0 t} \eta(t)$ and $\bar{\gamma} = -\frac{i}{\hbar} \int_0^T dt \, e^{-i\omega_0 t} \bar{\eta}(t)$ are Grassmann variables. (2 points)

(h) Show that

$$\frac{1}{Z_{\beta}} \operatorname{Tr} \left(e^{-\beta \hat{H}_0} e^{\hat{c}^{\dagger} \gamma - \bar{\gamma} \hat{c}} \right) = (1 + e^{-\beta \hbar \omega_0})^{-1} \sum_{n=0}^{1} e^{-\beta \hbar \omega_0 n} \langle n | e^{\hat{c}^{\dagger} \gamma - \bar{\gamma} \hat{c}} | n \rangle.$$
(20.9)

(2 points)

(i) Show that

$$\langle 0|e^{\hat{c}^{\dagger}\gamma-\bar{\gamma}\hat{c}}|0\rangle = 1 - \frac{1}{2}\bar{\gamma}\gamma \qquad (20.10)$$

$$\langle 1|e^{\hat{c}^{\dagger}\gamma-\bar{\gamma}\hat{c}}|1\rangle = 1 + \frac{1}{2}\bar{\gamma}\gamma \qquad (20.11)$$

(3 points)

Hint: Taking into account that γ and $\bar{\gamma}$ are Grassmann variables and that \hat{c} and \hat{c}^{\dagger} are fermion operators, expand the exponentials on the left-hand side of equation (20.10) and (20.11) as a power series in these variables.

(j) Substitute (20.9) in (20.8) and, taking into account (20.10) and (20.11), with γ and $\bar{\gamma}$ given by their definition above, show that

$$\mathcal{Z}[\eta(t),\bar{\eta}(t)] = e^{-\frac{1}{\hbar^2} \int_0^T dt \int_0^T du \,\bar{\eta}(t)\eta(u)\tilde{G}(t-u)},\tag{20.12}$$

where $\tilde{G}(t-u) = \frac{1}{2}e^{-i\omega_0(t-u)}[\tanh(\beta\hbar\omega_0/2) + \Theta(t-u) - \Theta(u-t)].$ (3 points) Hint: $e^{\frac{1}{2}\tanh(\beta\omega_0/2)\bar{\gamma}\gamma} = 1 - \frac{1}{2}\tanh(\beta\omega_0/2)\bar{\gamma}\gamma.$

(k) Finally, by performing the functional derivatives with respect to $\eta(t)$ and $\bar{\eta}(t)$, show that $\langle T\{\hat{c}(t_1)\hat{c}^{\dagger}(t_2)\}\rangle = \tilde{G}(t_1 - t_2)$. (2 points)

21 Bogoliubov transformation for a fermion two-mode PROBLEM – Generating functional

Consider a Hamiltonian \hat{H}_0 that describes a fermion two-mode problem in which hopping between the two modes can occur

$$\hat{H}_0 = \hbar \omega_L \hat{c}_L^{\dagger} \hat{c}_L + \hbar \omega_R \hat{c}_R^{\dagger} \hat{c}_R - t(\hat{c}_L^{\dagger} \hat{c}_R + \hat{c}_R^{\dagger} \hat{c}_L), \qquad (21.1)$$

where t is a real quantity. Assume for definiteness that $\omega_L > \omega_R$ (if the opposite is true, simply interchange L and R). The annihilation and creation operators satisfy the canonical anti-commutation relations $[\hat{c}_{\mu}, \hat{c}_{\nu}]_{+} = 0$, $[\hat{c}^{\dagger}_{\mu}, \hat{c}^{\dagger}_{\nu}]_{+} = 0$, and $[\hat{c}_{\mu}, \hat{c}^{\dagger}_{\nu}]_{+} = \delta_{\mu,\nu}$, where $\mu, \nu = L, R$.

- (a) Define the operators \hat{c}_+ ,
- (b) Define the operators $\hat{c}_+, \hat{c}_+^{\dagger}, \hat{c}_-, \hat{c}_-^{\dagger}$ through the following relations

$$\hat{c}_L = \cos\theta \hat{c}_+ + \sin\theta \hat{c}_-,\tag{21.2}$$

$$\hat{c}_L = -\sin\theta \hat{c}_+ + \cos\theta \hat{c}_-,\tag{21.3}$$

where θ is a real number. The hermitian conjugate of these equations give us the relation between the operators \hat{c}_L^{\dagger} , \hat{c}_R^{\dagger} and \hat{c}_+^{\dagger} , \hat{c}_-^{\dagger} .

Show that the new operators \hat{c}_+ , \hat{c}_+^{\dagger} , \hat{c}_- , \hat{c}_-^{\dagger} also obey canonical anti-commutation relations among themselves.

(2 points)

Hint: Express the new operators in terms of the old ones and use the known anticommutation relations.

(c) Show that it one chooses θ such that $\tan(2\theta) = \frac{2t}{\hbar(\omega_L - \omega_R)}$, one can write \hat{H}_0 in terms of the operators \hat{c}_+ , \hat{c}_+^{\dagger} , \hat{c}_- , \hat{c}_-^{\dagger} as

$$\hat{H}_0 = \hbar \omega_+ \hat{c}_+^\dagger \hat{c}_+ + \hbar \omega_- \hat{c}_-^\dagger \hat{c}_-, \qquad (21.4)$$

i.e., \hat{H}_0 is diagonal in the new set of operators. The eigenfrequencies ω_{\pm} are given by $\omega_{\pm} = \frac{1}{2}[(\omega_L + \omega_R) \pm \sqrt{(\omega_L - \omega_R)^2 + 4t^2}]$. Note that apart from an overall constant, \hat{H}_0 can be written as the sum of two independent fermionic harmonic oscillators. (4 points)

Hint: Substitute (21.2),(??) and their complex conjugates in (21.1) and ask yourself what is the condition that θ must obey in order that the cross terms involving $\hat{c}^{\dagger}_{+}\hat{c}_{-}$ and $\hat{c}^{\dagger}_{-}\hat{c}_{+}$ ar exactly zero.

(d) Show that the partition function $Z_{\beta} = \text{Tr}(e^{-\beta \hat{H}_0})$ is given by

$$Z_{\beta} = Z_{\beta}^{+} Z_{\beta}^{-} = 4 \cosh(\beta \omega_{+}/2) \cosh(\beta \omega_{-}/2) e^{-\beta \hbar (\omega_{+} + \omega_{-})/2}, \qquad (21.5)$$

in which Z_{β}^{\pm} are the individual partition functions of the independent modes + and -.

(2 points)

Hint: Write the trace in terms of the eigenstates that diagonalise the Hamiltonian *i.e.* the eigenstates of the operator $\hat{n}_{+} = \hat{c}_{+}^{\dagger}\hat{c}_{+}$ and $\hat{n}_{-} = \hat{c}_{-}^{\dagger}\hat{c}_{-}$.

(e) Consider the more general case in which the Hamiltonian is given, in the Schrödinger picture, by $\hat{H}(t) = \hat{H}_0 + \hat{H}_I(t)$, with $\hat{H}_I(t) = -\sum_{\mu} [\bar{\eta}(t)\hat{c}_{\mu} + \hat{c}_{\mu}^{\dagger}\eta_{\mu}(t)]$, where $\eta_{\mu}(t)$ and $\bar{\eta}_{\mu}(t)$ are Grassmann fields that *anti-commute* with each other and with the annihilation and creation operators \hat{c}_{μ} and \hat{c}_{μ}^{\dagger} . In other words, for arbitrary times t and u, $[\eta(t), \eta(u)]_+ = 0$, $[\bar{\eta}(t), \bar{\eta}(u)]_+ = 0$, $[\eta(t), \bar{\eta}(u)]_+ = 0$, and $[\eta(t), \hat{c}]_+ = 0$, $[\eta(t), \hat{c}^{\dagger}]_+ = 0$, $[\bar{\eta}(t), \hat{c}^{\dagger}]_+ = 0$. Moreover, these Grassmann variables commute with any *c-number*.

The generating functional of the correlation functions of the annihilation and creation operators is defined as

$$\mathcal{Z}[\eta_L(t), \eta_R(t), \bar{\eta}_L(t), \bar{\eta}_R(t)] = \frac{1}{Z_\beta} \operatorname{Tr} \left(e^{-\beta \hat{H}_0} T e^{-\frac{i}{\hbar} \int_0^T dt \, \hat{H}_I^{\mathrm{int}}(t)} \right),$$
(21.6)

where $\hat{H}_{I}^{\text{int}}(t) = e^{i\hat{H}_{0}t/\hbar}\hat{H}_{I}(t)e^{-i\hat{H}_{0}t/\hbar}$ is the interaction Hamiltonian in the interaction representation. Show that it can be written as $(\mu = L, R)$

$$\mathcal{Z}[\eta_L(t), \eta_R(t), \bar{\eta}_L(t), \bar{\eta}_R(t)] = \mathcal{Z}[\eta_+(t), \bar{\eta}_+(t)] \mathcal{Z}[\eta_-(t), \bar{\eta}_-(t)], \qquad (21.7)$$

where the Grassmann source fields $\eta_{\pm}(t)$ are given in terms of the original fields by

$$\eta_{+}(t) = \cos \theta \eta_{L}(t) - \sin \theta \eta_{R}(t), \qquad (21.8)$$

$$\eta_{-}(t) = \sin \theta \eta_{L}(t) + \cos \theta \eta_{R}(t), \qquad (21.9)$$

with analogous equations for the conjugated fields $\bar{\eta}_{\pm}(t)$. The generating functionals $\mathcal{Z}_{\pm}[\eta_{\pm}(t), \bar{\eta}_{\pm}(t)]$ are given by

$$\mathcal{Z}_{\pm}[\eta_{\pm}(t),\bar{\eta}_{\pm}(t)] = e^{-\frac{1}{\hbar^2} \int_0^T dt \int_0^T du \,\bar{\eta}_{\pm}(t)\eta_{\pm}(u)\tilde{G}_{\pm}(t-u)},\tag{21.10}$$

where $\tilde{G}_{\pm}(t-u) = \frac{1}{2}e^{-i\omega_{\pm}(t-u)}[\tanh(\beta\hbar\omega_{\pm}/2) + \Theta(t-u) - \Theta(u-t)].$ (5 points)

Hint: Express the operator $\hat{H}_{I}(t)$ in terms of the annihilation and creation operators $\hat{c}_{+}, \hat{c}_{+}^{\dagger}, \hat{c}_{-}, \hat{c}_{-}^{\dagger}$. Show that $\hat{H}_{0} = \hat{H}_{0+} + \hat{H}_{0-}$ with $[\hat{H}_{0+}, \hat{H}_{0-}]_{-} = 0$ and because of that, one can write $\hat{H}_{0} = \hat{H}_{I+}^{\text{int}}(t) + \hat{H}_{I-}^{\text{int}}(t)$ such that $\hat{H}_{I+}^{\text{int}}(t)\hat{H}_{I-}^{\text{int}}(u)]_{-} = 0$ for arbitrary t, u. Once this is done, all you need is to apply the single mode result obtained in **20(j)**.

(f) By writing the functional (21.7) in terms of the original sources $\eta_L(t)$, $\bar{\eta}_L(t)$, $\eta_R(t)$, $\bar{\eta}_R(t)$, show that one has

$$\langle T\{\hat{c}_L(t_1)\hat{c}_L^{\dagger}(t_2)\}\rangle = \cos^2\theta \tilde{G}_+(t_1-t_2) + \sin^2\theta \tilde{G}_-(t_1-t_2),$$
 (21.11)

$$\langle T\{\hat{c}_{R}(t_{1})\hat{c}_{R}^{\dagger}(t_{2})\}\rangle = \sin^{2}\theta\tilde{G}_{+}(t_{1}-t_{2}) + \cos^{2}\theta\tilde{G}_{-}(t_{1}-t_{2}), \qquad (21.12)$$

$$\langle T\{\hat{c}_L(t_1)\hat{c}_R^{\dagger}(t_2)\}\rangle = -\frac{1}{2}\sin(2\theta)[\tilde{G}_+(t_1-t_2)+\tilde{G}_-(t_1-t_2)],$$
 (21.13)

$$\langle T\{\hat{c}_R(t_1)\hat{c}_L^{\dagger}(t_2)\}\rangle = -\frac{1}{2}\sin(2\theta)[\tilde{G}_+(t_1-t_2)+\tilde{G}_-(t_1-t_2)].$$
 (21.14)

(4 points)