ZHEJIANG UNIVERSITY
 Center for Correlated Matter
 Stefan Kirchner
 kirchner@correlated-matter.com

Solid State Theory I

Mini Review

May 16, 2017

2ND QUANTIZATION

The Hilbert space of a system composed of N (for the moment distinguishable) subsystems is given by the tensor product of individual Hilbert spaces

$$
\begin{equation*}
\mathcal{H}_{N}=\mathcal{H}_{S_{1}} \otimes \mathcal{H}_{S_{2}} \otimes \ldots \otimes \mathcal{H}_{S_{N}} \tag{0.1}
\end{equation*}
$$

A complete basis for this space is given by the tensor product

$$
\begin{equation*}
\left\{\left|\alpha_{i_{1}}\right\rangle \otimes\left|\alpha_{i_{2}}\right\rangle \otimes \ldots \otimes\left|\alpha_{i_{N}}\right\rangle\right\} \tag{0.2}
\end{equation*}
$$

where $\left\{\left|\alpha_{i_{n}}\right\rangle\right\}$ is a complete set of orthonormal vectors that span the Hilbert space of the system n.
The closure relation for \mathcal{H} is given by

$$
\begin{array}{r}
\sum_{i_{1}, i_{2}, \ldots, i_{N}}\left|\alpha_{i_{1}}\right\rangle \otimes\left|\alpha_{i_{2}}\right\rangle \otimes \ldots \otimes\left|\alpha_{i_{N}}\right\rangle\left\langle\alpha_{i_{1}}\right| \otimes\left\langle\alpha_{i_{2}}\right| \otimes \ldots \otimes\left\langle\alpha_{i_{N}}\right|= \\
\left(\sum_{i_{1}}\left|\alpha_{i_{1}}\right\rangle\left\langle\alpha_{i_{1}}\right|\right) \ldots\left(\sum_{i_{N}}\left|\alpha_{i_{N}}\right\rangle\left\langle\alpha_{i_{N}}\right|\right) \&= \\
\mathbf{1}_{1} \otimes \ldots \otimes \mathbf{1}_{N} . \tag{0.3}
\end{array}
$$

As short-hand for the tensor product above, we will write

$$
\begin{equation*}
\left|\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{N}}\right\rangle=\left|\alpha_{i_{1}}\right\rangle \otimes\left|\alpha_{i_{2}}\right\rangle \otimes \ldots \otimes\left|\alpha_{i_{N}}\right\rangle . \tag{0.4}
\end{equation*}
$$

In the case of indistinguishable particles, it can be shown in relativistic quantum field theory that, in three dimensions, the joint wave-function of such a system can have one of two possible symmetries under the interchange of two particles:

- it is symmetric in the case of particles of integer spin (bosons), or
- it is anti-symmetric in the case of particles of half-integer spin (fermions).

This so-called spin-statistics theorem has to be accepted at our level as a fact of life and moreover, it does not hold in two dimensions (the particles with strange interchange properties that are found in certain two-dimensional electron gases are called anyons). If one takes this observation into account, one concludes that the (un-normalised) wavefunction of such systems of indistinguishable particles has to have the form

$$
\begin{equation*}
\left.\left.\mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\} \left.=\frac{1}{\sqrt{N!}} \sum_{P} \xi^{\sigma(P)} \right\rvert\, \alpha_{P(1)}, \alpha_{P(2)}, \ldots, \alpha_{P(N)}\right) \tag{0.5}
\end{equation*}
$$

where P represents one of the N ! possible permutations of the numbers $\{1,2, \ldots, N\}$ and $\xi= \pm 1$, having the plus sign for bosons and the minus sign for fermions. The function $\sigma(P)$ is the order of the permutation, i.e. the number, modulo 2 , of transpositions of two numbers at a time that is necessary to perform in order to bring the N numbers in that permutation to their natural order $1<2<\ldots<N$. It can be shown, e.g. by induction, that a given permutation can always be decomposed into a product of transpositions. Such a decomposition is not unique, but the number of transpositions necessary is either even or odd and thus the order of a permutation is a well-defined quantity. Using the orthonormal character of the basis of each individual particle, it is easy to convince oneself that a second state $\left.\mid \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{N}^{\prime}\right\}$ is orthogonal to $\left.\mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}$ unless the set of the α^{\prime} s constitute a permutation of $\alpha_{1}, \ldots, \alpha_{N}$. Thus, one has

$$
\begin{equation*}
\left.\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N} \mid \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{N}^{\prime}\right\}=\sum_{P} \prod_{i}^{N} \delta_{\alpha_{i}, \alpha_{P(i)}^{\prime}} \| \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\} \|^{2} \tag{0.6}
\end{equation*}
$$

where only one of the terms in the summation above is non-zero. Applying the definition given in (0.5), one obtains for the square of the norm of $\left.\mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}$ the result

$$
\begin{align*}
& \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N} \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\} \\
& =\frac{1}{N!} \sum_{P, P^{\prime}} \xi^{\sigma(P)+\sigma\left(P^{\prime}\right)}\left(\alpha_{P^{\prime}(1)}, \alpha_{P^{\prime}(2)}, \ldots, \alpha_{P^{\prime}(N)} \mid \alpha_{P(1)}, \alpha_{P(2)}, \ldots, \alpha_{P(N)}\right) \tag{0.7}\\
& =\frac{1}{N!} \sum_{P, P^{\prime}} \xi^{\sigma(P)+\sigma\left(P^{\prime}\right)}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N} \mid \alpha_{P^{\prime} \cdot P^{-1}(1)}, \alpha_{P \cdot P^{\prime-1}(2)}, \ldots, \alpha_{P \cdot P^{\prime-1}(N)}\right) \\
& =\sum_{\tilde{P}} \xi^{\sigma(\tilde{P})}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N} \mid \alpha_{\tilde{P}(1)}, \alpha_{\tilde{P}(2)}, \ldots, \alpha_{\tilde{P}(N)}\right) \\
& =\sum_{\tilde{P}} \xi^{\sigma(\tilde{P})}\left\langle\alpha_{1} \mid \alpha_{\tilde{P}(1)}\right\rangle\left\langle\alpha_{2} \mid \alpha_{\tilde{P}(2)}\right\rangle \ldots\left\langle\alpha_{N} \mid \alpha_{\tilde{P}(N)}\right\rangle \\
& = \begin{cases}\operatorname{det}\left[\left\langle\alpha_{i} \mid \alpha_{j}\right\rangle\right], & \text { for fermions } \\
\operatorname{per}\left[\left\langle\alpha_{i} \mid \alpha_{j}\right\rangle\right], & \text { for bosons }\end{cases} \tag{0.8}
\end{align*}
$$

where we have reordered the terms in the summation over P^{\prime} on going from the first to the second line of this equation, and have reordered the summation over P such that it is performed over the permutation $\tilde{P}=P \cdot P^{\prime-1}$, with $\sigma(\tilde{P})=\sigma(P)+\sigma\left(P^{\prime}\right)$, on going from the second to the third line. The summation over P^{\prime} can then be performed and gives a simple factor $N!$. Since the vectors are supposed to be orthonormal, the determinant in (0.7) is equal to one if all α_{i} 's are different and zero otherwise. The calculation of the permanent is a bit more involved but is nevertheless trivial.
Suppose there are k different $\alpha \mathrm{s}, \alpha_{1}, \ldots, \alpha_{k}$, such that $n_{\alpha_{1}}+\ldots+n_{\alpha_{k}}=N$. Since the wave-function for bosons is symmetric, one can reorder the α s that are equal in a contiguous fashion, i.e. we can write the wave-function as $\left.\mid \alpha_{1}, \ldots, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{2}, \ldots, \alpha_{k}, \ldots, \alpha_{k}\right\}$, where α_{1} appears $n_{\alpha_{1}}$ times, etc. From this construction, it is now easy to see that the permanent that we wish to compute is that of a block-diagonal matrix in which each block is solely constituted of 1 s . Since the permanent of a matrix that is composed of 1 s is equal to the factorial of its dimension and the dimensions of each block matrix are $n_{\alpha_{1}}, \ldots, n_{\alpha_{k}}$, one sees that $\operatorname{per}\left[\left\langle\alpha_{i} \mid \alpha_{j}\right\rangle\right]=\prod_{i=1}^{k} n_{\alpha_{i}}!$.

One now defines the creation operator through the relation

$$
\begin{equation*}
\left.\left.\mid \mu, \alpha_{1}, \ldots, \alpha_{N}\right\}=c_{\mu}^{\dagger} \mid \alpha_{1}, \ldots, \alpha_{N}\right\}, \tag{0.9}
\end{equation*}
$$

i.e., this operator adds a particle in state μ to the many-particle state. If one wishes to add two particles to the system, to states μ and $\nu(\mu \neq \nu)$, say, one may apply first c_{μ}^{\dagger} and then c_{ν}^{\dagger}, obtaining $\left.\mid \mu, \nu, \alpha_{1}, \ldots, \alpha_{N}\right\}$ or the other way around, obtaining instead $\left.\mid \nu, \mu, \alpha_{1}, \ldots, \alpha_{N}\right\}$. However, since $\left.\left.\mid \nu, \mu, \alpha_{1}, \ldots, \alpha_{N}\right\}=\xi \mid \mu, \nu, \alpha_{1}, \ldots, \alpha_{N}\right\}$, one concludes that

$$
\begin{equation*}
c_{\mu}^{\dagger} c_{\nu}^{\dagger}-\xi c_{\nu}^{\dagger} c_{\mu}^{\dagger}=0, \tag{0.10}
\end{equation*}
$$

i.e. the creation operators commute in the case of bosons, but they anti-commute in the case of fermions. The same rule has to apply to the adjoint operators c_{μ} and c_{ν}, as results from considering the adjoint of the above equation.
It follows from (0.9) that

$$
\begin{equation*}
\left.\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\left|c_{\mu}\right| \mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}=\| \mid \mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\} \|^{2} \tag{0.11}
\end{equation*}
$$

Since the above scalar product is non-zero (in the case of fermions, one assumes that μ is different from all the $\alpha \mathrm{s})$, this implies that $\left.c_{\mu} \alpha_{1}, \ldots, \alpha_{N}=C\left(\mu, \alpha_{1}, \ldots, \alpha_{N}\right) \mid \alpha_{1}, \ldots, \alpha_{N}\right\}$, with

$$
\begin{equation*}
C\left(\mu, \alpha_{1}, \ldots, \alpha_{N}\right)=\frac{\left.\| \mid \mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\} \|^{2}}{\left.\| \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\} \|^{2}}=n_{\mu}\left(\mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \tag{0.12}
\end{equation*}
$$

where $n_{\nu}\left(\mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)$ is the number of times the index μ appears in the series $\mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$.

In the general case of a series of labels $\alpha_{1}, \ldots, \alpha_{N}$, in which the first is not necessarily equal to μ, the rule that generalizes this result and takes into account the symmetry of the wave-function is

$$
\begin{equation*}
\left.\left.c_{\mu} \mid \mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}=\sum_{i=1}^{N} \xi^{i-1} \delta_{\mu, \alpha_{i}} \mid \alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{N}\right\} \tag{0.13}
\end{equation*}
$$

Note in particular that the state with no particles, the vacuum, is annihilated by each one of the operators c_{μ}, i.e. $c_{\mu}|0\rangle=0$. Using (0.13), we now have

$$
\begin{equation*}
\left.\left.\left[c_{\mu} c_{\nu}^{\dagger}-\xi c_{\nu}^{\dagger} c_{\mu}\right] \mid \mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}=\delta_{\mu, \nu} \mid \mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\} \tag{0.14}
\end{equation*}
$$

Since the state $\left.\mid \mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}$ is arbitrary, we conclude that

$$
\begin{equation*}
\left[c_{\mu} c_{\nu}^{\dagger}\right]_{-\xi}=\delta_{\mu, \nu} \tag{0.15}
\end{equation*}
$$

i.e. these operators also obey commutation $(\xi=1)$ or anti-commutation $(\xi=-1)$ relations among themselves, but with a commutator or anti-commutator that is non-zero, unlike above.
Note that the state that arises from the normalisation of $\left.\mid \mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}=c_{\alpha_{1}}^{\dagger} \ldots c_{\alpha_{N}}^{\dagger}|0\rangle$ can be written, up to a reordering of the operators, as

$$
\begin{equation*}
\left|n_{\alpha_{1}}, n_{\alpha_{2}}, \ldots, n_{\alpha_{k}}\right\rangle=\frac{\left(c_{\alpha_{1}}^{\dagger}\right)^{n_{\alpha_{1}}}}{\sqrt{n_{\alpha_{1}}!}} \ldots \frac{\left(c_{\alpha_{k}}^{\dagger}\right)^{n_{\alpha_{k}}}}{\sqrt{n_{\alpha_{k}}!}}|0\rangle \tag{0.16}
\end{equation*}
$$

where solely the occupation number of each mode is displayed. This form is valid both for bosons and fermions (but in the latter case, $n_{\alpha}=0,1$). It is relatively simple to show from the closure relation (0.3), after symmetrisation or anti-symmetrisation, that this set of states obeys the closure relation

$$
\begin{equation*}
\sum_{\left\{n_{\alpha}\right\}}\left|n_{\alpha_{1}}, n_{\alpha_{2}}, \ldots, n_{\alpha_{k}}\right\rangle\left\langle n_{\alpha_{1}}, n_{\alpha_{2}}, \ldots, n_{\alpha_{k}}\right|=\mathcal{P}_{\xi}, \tag{0.17}
\end{equation*}
$$

where the sum is over all possible particle numbers on all possible modes and

$$
\begin{equation*}
\left.\left.\mathcal{P}_{\xi}=\sum_{N} \frac{1}{N!} \sum_{\alpha_{1}, \ldots, \alpha_{N}} \sum_{P} \xi^{\sigma(P)} \right\rvert\, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)\left(\mu, \alpha_{P_{1}}, \alpha_{P_{2}}, \ldots, \alpha_{P_{N}} \mid\right. \tag{0.18}
\end{equation*}
$$

is the symmetrisation or anti-symmetrisation operator of the wave-functions.
One last note on a change of basis in second quantisation. It is known from elementary quantum mechanics that if $\left\{\left|\alpha_{i}\right\rangle\right\}$ is a complete basis of the one-particle Hilbert space and $\left\{\left|\beta_{j}\right\rangle\right\}$ is another complete basis, the two are related by an unitary transformation, i.e. $\left|\beta_{j}\right\rangle=\sum_{i}\left|\alpha_{i}\right\rangle U_{i j}^{\dagger}$, where $U_{j i}=\left\langle\beta_{j} \mid \alpha_{i}\right\rangle$. Since $\left|\alpha_{i}\right\rangle=c_{\alpha_{i}}^{\dagger}|0\rangle$ and $\left.\beta_{j}\right\rangle=c_{\beta_{j}}^{\dagger}|0\rangle$, we conclude that $c_{\beta_{j}}^{\dagger}=\sum_{i} c_{\alpha_{i}}^{\dagger} U_{i j}^{\dagger}$. The adjoint of this equation is the desired transformation law

$$
\begin{equation*}
c_{\beta_{j}}=\sum_{i} U_{j i} c_{\alpha_{i}} . \tag{0.19}
\end{equation*}
$$

