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2ND QUANTIZATION

The Hilbert space of a system composed of N (for the moment distinguishable) sub-
systems is given by the tensor product of individual Hilbert spaces

Hn =Hs, @Hg, @ ... 0 Hgs, - (0.1)
A complete basis for this space is given by the tensor product
{|ai1>®|ai2>®"'®|ai1\r>}7 (0'2)

where {|o;, )} is a complete set of orthonormal vectors that span the Hilbert space of the
system n.
The closure relation for H is given by

D i) @) @ - @ iy )| © (@] ® ... © (| =

(X lastenl) - (Xl el )& =
| N 11 ®...01y. (03)

As short-hand for the tensor product above, we will write

|ai1,a¢2,. . .,OziN> = |ai1> &® |Oéi2> R...xQ |OéiN>. (04)



In the case of indistinguishable particles, it can be shown in relativistic quantum field
theory that, in three dimensions, the joint wave-function of such a system can have one
of two possible symmetries under the interchange of two particles:

e it is symmetric in the case of particles of integer spin (bosons), or
e it is anti-symmetric in the case of particles of half-integer spin (fermions).

This so-called spin-statistics theorem has to be accepted at our level as a fact of life
and moreover, it does not hold in two dimensions (the particles with strange interchange
properties that are found in certain two-dimensional electron gases are called anyons).
If one takes this observation into account, one concludes that the (un-normalised) wave-
function of such systems of indistinguishable particles has to have the form
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where P represents one of the N! possible permutations of the numbers {1,2,..., N} and

& = +£1, having the plus sign for bosons and the minus sign for fermions. The function
o(P) is the order of the permutation, i.e. the number, modulo 2, of transpositions of two
numbers at a time that is necessary to perform in order to bring the N numbers in that
permutation to their natural order 1 < 2 < ... < N. It can be shown, e.g. by induction,
that a given permutation can always be decomposed into a product of transpositions.
Such a decomposition is not unique, but the number of transpositions necessary is either
even or odd and thus the order of a permutation is a well-defined quantity. Using the
orthonormal character of the basis of each individual particle, it is easy to convince

oneself that a second state ’0/1, o, ..., aly} is orthogonal to ’al, @2,...,ay} unless the
set of the o's constitute a permutation of a1, ..., ay. Thus, one has
N
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where only one of the terms in the summation above is non-zero. Applying the definition
given in (0.5), one obtains for the square of the norm of ‘al, a9, ... ,aN} the result

{Oél,OéQ,...,OZN|O[1,0[2,...,OZN}
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det [(aj|a;)], for fermions

per [(a;]a;)], for bosons
where we have reordered the terms in the summation over P’ on going from the first to
the second line of this equation, and have reordered the summation over P such that it is
performed over the permutation P = P- P'~! with o(P) = o(P) + o (P’), on going from
the second to the third line. The summation over P’ can then be performed and gives
a simple factor N!. Since the vectors are supposed to be orthonormal, the determinant
in (0.7) is equal to one if all a;’s are different and zero otherwise. The calculation of the
permanent is a bit more involved but is nevertheless trivial.

Suppose there are k different as, a1,..., ay, such that n,, + ...+ no, = N. Since the
wave-function for bosons is symmetric, one can reorder the as that are equal in a contigu-
ous fashion, i.e. we can write the wave-function as |a1,...,a1, 2, ..., a9, ..., K, ...,k },

where o1 appears nq, times, etc. From this construction, it is now easy to see that the
permanent that we wish to compute is that of a block-diagonal matrix in which each
block is solely constituted of 1s. Since the permanent of a matrix that is composed of
1s is equal to the factorial of its dimension and the dimensions of each block matrix are

Nays - - > Moy, ONe sees that per[(a;|a;)] = Hle Ny, -

One now defines the creation operator through the relation
’M,al>---7OCN}:CL‘OCL---,OCN}, (0.9)

i.e., this operator adds a particle in state p to the many-particle state. If one wishes
to add two particles to the system, to states p and v (u # v), say, one may apply first

cL and then cl, obtaining |y, v, aq,...,an} or the other way around, obtaining instead
v, puyaq, ..., an}. However, since |v, u, aq,...,an} = &|pu,v,a1,...,ayn}, one concludes
that

CLC,T/ - fclT,cL =0, (0.10)



i.e. the creation operators commute in the case of bosons, but they anti-commute in
the case of fermions. The same rule has to apply to the adjoint operators ¢, and c,, as
results from considering the adjoint of the above equation.

It follows from (0.9) that

{Oél,OéQ, e aN|CM’/‘L7 aq, ag, ..., OéN} = ” ’,U,, a1, g, ... 7aN} ”2 : (011)
Since the above scalar product is non-zero (in the case of fermions, one assumes that pu is
different from all the as), this implies that ¢, a1,...,any = C(p, o, . .. ,aN)‘al, e ,aN},
with
H ‘,U,Oél,OJQ,. : '7aN} H2
Clu,aq,...,an) = 5— = nu(p, a1, 0, ..., ), (0.12)
|| ‘041, ag, ... ,aN} ”

where n, (@, a1, g, ..., a) is the number of times the index p appears in the series
M, 01, 2, ..., N -
In the general case of a series of labels ajy,...,ay, in which the first is not necessarily

equal to u, the rule that generalizes this result and takes into account the symmetry of
the wave-function is

N
i—1
cu‘u,al,ag, .. .,aN} = Zfz Opi0s

al,...,ai_l,ai+1,...,aN}. (013)

Note in particular that the state with no particles, the vacuum, is annihilated by each
one of the operators Cu, i-e. ¢,|0) = 0. Using (0.13), we now have

[ c, V §cycu] ‘,U,,Odl,()éz, . ,aN} = (5%1,‘/1,, at,a,. .. ,aN}. (0.14)

Since the state ‘,u, a1, a9, ..., aN} is arbitrary, we conclude that
[cuci] = S (0.15)
i.e. these operators also obey commutation (§ = 1) or anti-commutation (§ = —1) re-

lations among themselves, but with a commutator or anti-commutator that is non-zero,
unlike above.

Note that the state that arises from the normalisation of ’u, a1,09,. .., aN} = cLl e CLN |0)
can be written, up to a reordering of the operators, as
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where solely the occupation number of each mode is displayed. This form is valid both
for bosons and fermions (but in the latter case, n, = 0,1). It is relatively simple to show
from the closure relation (0.3), after symmetrisation or anti-symmetrisation, that this
set of states obeys the closure relation
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where the sum is over all possible particle numbers on all possible modes and

1
Pg = Zﬁ Z ZE”(P)|a1,a2, e ,aN) ([L,Oépl,ap2, .. .,Osz| (0.18)
N

ag,..,aN P

is the symmetrisation or anti-symmetrisation operator of the wave-functions.

One last note on a change of basis in second quantisation. It is known from elementary
quantum mechanics that if {|a;)} is a complete basis of the one-particle Hilbert space
and {|3;)} is another complete basis, the two are related by an unitary transformation,
ie. |Bj) = >, |ozi>UiTj, where Uj; = (Bj|a;). Since |a;) = cLi|0) and ;) = cTﬁj|O>, we
conclude that c%j =>, cLiU;rj. The adjoint of this equation is the desired transformation
law

cg, = Z UjiCa,- (0.19)



