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2nd quantization

The Hilbert space of a system composed of N (for the moment distinguishable) sub-
systems is given by the tensor product of individual Hilbert spaces

HN = HS1 ⊗HS2 ⊗ . . .⊗HSN . (0.1)

A complete basis for this space is given by the tensor product

{|αi1〉 ⊗ |αi2〉 ⊗ . . .⊗ |αiN 〉}, (0.2)

where {|αin〉} is a complete set of orthonormal vectors that span the Hilbert space of the
system n.
The closure relation for H is given by∑

i1,i2,...,iN

|αi1〉 ⊗ |αi2〉 ⊗ . . .⊗ |αiN 〉〈αi1 | ⊗ 〈αi2 | ⊗ . . .⊗ 〈αiN | =(∑
i1

|αi1〉〈αi1 |
)
. . .
(∑

iN

|αiN 〉〈αiN |
)
& =

11 ⊗ . . .⊗ 1N . (0.3)

As short-hand for the tensor product above, we will write

|αi1 , αi2 , . . . , αiN 〉 = |αi1〉 ⊗ |αi2〉 ⊗ . . .⊗ |αiN 〉. (0.4)
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In the case of indistinguishable particles, it can be shown in relativistic quantum field
theory that, in three dimensions, the joint wave-function of such a system can have one
of two possible symmetries under the interchange of two particles:

• it is symmetric in the case of particles of integer spin (bosons), or

• it is anti-symmetric in the case of particles of half-integer spin (fermions).

This so-called spin-statistics theorem has to be accepted at our level as a fact of life
and moreover, it does not hold in two dimensions (the particles with strange interchange
properties that are found in certain two-dimensional electron gases are called anyons).
If one takes this observation into account, one concludes that the (un-normalised) wave-
function of such systems of indistinguishable particles has to have the form∣∣α1, α2, . . . , αN

}
=

1√
N !

∑
P

ξσ(P )
∣∣αP (1), αP (2), . . . , αP (N)

)
, (0.5)

where P represents one of the N ! possible permutations of the numbers {1, 2, . . . , N} and
ξ = ±1, having the plus sign for bosons and the minus sign for fermions. The function
σ(P ) is the order of the permutation, i.e. the number, modulo 2, of transpositions of two
numbers at a time that is necessary to perform in order to bring the N numbers in that
permutation to their natural order 1 < 2 < ... < N . It can be shown, e.g. by induction,
that a given permutation can always be decomposed into a product of transpositions.
Such a decomposition is not unique, but the number of transpositions necessary is either
even or odd and thus the order of a permutation is a well-defined quantity. Using the
orthonormal character of the basis of each individual particle, it is easy to convince
oneself that a second state

∣∣α′1, α′2, . . . , α′N} is orthogonal to
∣∣α1, α2, . . . , αN

}
unless the

set of the α′s constitute a permutation of α1, . . . , αN . Thus, one has

{
α1, α2, . . . , αN

∣∣α′1, α′2, . . . , α′N} =
∑
P

N∏
i

δαi,α′P (i)
||
∣∣α1, α2, . . . , αN

}
||2 , (0.6)
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where only one of the terms in the summation above is non-zero. Applying the definition
given in (0.5), one obtains for the square of the norm of

∣∣α1, α2, . . . , αN
}
the result{

α1, α2, . . . , αN
∣∣α1, α2, . . . , αN

}
=

1

N !

∑
P,P ′

ξσ(P )+σ(P ′)
(
αP ′(1), αP ′(2), . . . , αP ′(N)

∣∣αP (1), αP (2), . . . , αP (N)

)
(0.7)

=
1

N !

∑
P,P ′

ξσ(P )+σ(P ′)
(
α1, α2, . . . , αN

∣∣αP ′·P−1(1), αP ·P ′−1(2), . . . , αP ·P ′−1(N)

)
=
∑
P̃

ξσ(P̃ )
(
α1, α2, . . . , αN

∣∣αP̃ (1), αP̃ (2), . . . , αP̃ (N)

)
=
∑
P̃

ξσ(P̃ )〈α1|αP̃ (1)〉〈α2|αP̃ (2)〉 . . . 〈αN |αP̃ (N)〉

=

{
det [〈αi|αj〉] , for fermions
per [〈αi|αj〉] , for bosons

, (0.8)

where we have reordered the terms in the summation over P ′ on going from the first to
the second line of this equation, and have reordered the summation over P such that it is
performed over the permutation P̃ = P ·P ′−1, with σ(P̃ ) = σ(P )+σ(P ′), on going from
the second to the third line. The summation over P ′ can then be performed and gives
a simple factor N !. Since the vectors are supposed to be orthonormal, the determinant
in (0.7) is equal to one if all αi’s are different and zero otherwise. The calculation of the
permanent is a bit more involved but is nevertheless trivial.
Suppose there are k different αs, α1, . . . , αk, such that nα1 + . . . + nαk = N . Since the
wave-function for bosons is symmetric, one can reorder the αs that are equal in a contigu-
ous fashion, i.e. we can write the wave-function as |α1, . . . , α1, α2, . . . , α2, . . . , αk, . . . , αk},
where α1 appears nα1 times, etc. From this construction, it is now easy to see that the
permanent that we wish to compute is that of a block-diagonal matrix in which each
block is solely constituted of 1s. Since the permanent of a matrix that is composed of
1s is equal to the factorial of its dimension and the dimensions of each block matrix are
nα1 , . . . , nαk , one sees that per[〈αi|αj〉] =

∏k
i=1 nαi !.

One now defines the creation operator through the relation∣∣µ, α1, . . . , αN
}
= c†µ

∣∣α1, . . . , αN
}
, (0.9)

i.e., this operator adds a particle in state µ to the many-particle state. If one wishes
to add two particles to the system, to states µ and ν (µ 6= ν), say, one may apply first
c†µ and then c†ν , obtaining |µ, ν, α1, . . . , αN} or the other way around, obtaining instead
|ν, µ, α1, . . . , αN}. However, since |ν, µ, α1, . . . , αN} = ξ|µ, ν, α1, . . . , αN}, one concludes
that

c†µc
†
ν − ξc†νc†µ = 0, (0.10)
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i.e. the creation operators commute in the case of bosons, but they anti-commute in
the case of fermions. The same rule has to apply to the adjoint operators cµ and cν , as
results from considering the adjoint of the above equation.
It follows from (0.9) that{

α1, α2, . . . , αN
∣∣cµ∣∣µ, α1, α2, . . . , αN

}
= ||

∣∣µ, α1, α2, . . . , αN
}
||2 . (0.11)

Since the above scalar product is non-zero (in the case of fermions, one assumes that µ is
different from all the αs), this implies that cµα1, . . . , αN = C(µ, α1, . . . , αN )

∣∣α1, . . . , αN
}
,

with

C(µ, α1, . . . , αN ) =
||
∣∣µ, α1, α2, . . . , αN

}
||2

||
∣∣α1, α2, . . . , αN

}
||2

= nµ(µ, α1, α2, . . . , αN ), (0.12)

where nν(µ, α1, α2, . . . , αN ) is the number of times the index µ appears in the series
µ, α1, α2, . . . , αN .

In the general case of a series of labels α1, . . . , αN , in which the first is not necessarily
equal to µ, the rule that generalizes this result and takes into account the symmetry of
the wave-function is

cµ
∣∣µ, α1, α2, . . . , αN

}
=

N∑
i=1

ξi−1δµ,αi
∣∣α1, . . . , αi−1, αi+1, . . . , αN

}
. (0.13)

Note in particular that the state with no particles, the vacuum, is annihilated by each
one of the operators cµ, i.e. cµ|0〉 = 0. Using (0.13), we now have[

cµc
†
ν − ξc†νcµ

]∣∣µ, α1, α2, . . . , αN
}
= δµ,ν

∣∣µ, α1, α2, . . . , αN
}
. (0.14)

Since the state
∣∣µ, α1, α2, . . . , αN

}
is arbitrary, we conclude that[
cµc
†
ν

]
−ξ = δµ,ν , (0.15)

i.e. these operators also obey commutation (ξ = 1) or anti-commutation (ξ = −1) re-
lations among themselves, but with a commutator or anti-commutator that is non-zero,
unlike above.
Note that the state that arises from the normalisation of

∣∣µ, α1, α2, . . . , αN
}
= c†α1 . . . c

†
αN |0〉

can be written, up to a reordering of the operators, as∣∣nα1 , nα2 , . . . , nαk
〉
=

(c†α1)
nα1√

nα1 !
. . .

(c†αk)
nαk√

nαk !

∣∣0〉, (0.16)

where solely the occupation number of each mode is displayed. This form is valid both
for bosons and fermions (but in the latter case, nα = 0, 1). It is relatively simple to show
from the closure relation (0.3), after symmetrisation or anti-symmetrisation, that this
set of states obeys the closure relation∑

{nα}

∣∣nα1 , nα2 , . . . , nαk
〉〈
nα1 , nα2 , . . . , nαk

∣∣ = Pξ, (0.17)
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where the sum is over all possible particle numbers on all possible modes and

Pξ =
∑
N

1

N !

∑
α1,...,αN

∑
P

ξσ(P )
∣∣α1, α2, . . . , αN

)(
µ, αP1 , αP2 , . . . , αPN

∣∣ (0.18)

is the symmetrisation or anti-symmetrisation operator of the wave-functions.

One last note on a change of basis in second quantisation. It is known from elementary
quantum mechanics that if {|αi〉} is a complete basis of the one-particle Hilbert space
and {|βj〉} is another complete basis, the two are related by an unitary transformation,
i.e. |βj〉 =

∑
i |αi〉U

†
ij , where Uji = 〈βj |αi〉. Since |αi〉 = c†αi |0〉 and βj〉 = c†βj |0〉, we

conclude that c†βj =
∑

i c
†
αiU

†
ij . The adjoint of this equation is the desired transformation

law

cβj =
∑
i

Ujicαi . (0.19)
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